Journal of Statistical Physics, Vol. 68, Nos. 5/6, 1992

Annealed n-Vector p-Spin Model
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A disordered n-vector model with p spin interactions is introduced and studied
in mean field theory for the annealed case. We present complete solutions for
the cases n=2 and n =3, and have obtained explicit order parameter equations
for all the stable solutions for arbitrary n. For all » and p we find one stable
high-temperature phase and one stable low-temperature phase. The phase
transition is of first order. For n =2, it is continuous in the order parameters for
p<4 and has a jump discontinuity in the order parameters if p >4. For n=3,
it has a jump discontinuity in the order parameters for all p.
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1. INTRODUCTION

In 1968 Stanley") introduced the n-vector model as a unifying description
of many simpler nonrandom models in statistical mechanics such as the
Ising model (n=1), the Vaks—Larkin plane rotator model (n=2), the
classical Heisenberg model (n=3), and the Berlin—Kac spherical model
(n=o0).

Stanley’s exact solutions have been confined to nearest neighbor one-
dimensional chains and hence do not exhibit a phase transition. The mean
field theory obtained by considering this model with an infinite-range
potential (and hence a phase transition) was studied by Silver et al.‘¥

We have generalized the n-vector model by introducing Gaussian ran-
dom bonds and p spin interactions. In this paper we shall be considering
the mean field theory for the annealed case. The quenched case is intended
for a followup publication.

For random spin systems, even mean field theory has proven to be
very subtle. The first infinite-range Ising spin glass model was proposed by
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Sherrington and Kirkpatrick (SK). In 1980 Derrida®®’ showed that the SK
model could be generalized to models involving p spin interactions and
that in the limit of p — co they simplified to a random energy model, which
consists of a collection of independently distributed random energy levels.
He was then able to solve this model without recourse to the n-replica
trick. Gross and Mézard™® confirmed his results for the same p — co model
by using the n-replica method and Parisi’s replica-symmetry-breaking
scheme. Gardner‘® and Stariolo'® have studied the model for finite p. They
find that for p=2 and p= oo there are two phases, a high-temperature
phase above a critical temperature T, and a spin-glass phase below T,. The
phase transition is of second order and continuous in the order parameter
g(x) for p=2 but has a jump discontinuity in the order parameter for
p=co. For all p>2 there are three phases, a high-temperature phase above
a critical temperature T, a spin-glass phase SG1 which is stable between
T,, and a second critical temperature T.,< T, and a spin-glass phase SG2
below T,,. The phase transition at T, is of second order with no latent
heat but displays a jump discontinuity in the order parameter. The phase
transition at 7T, is of second order and continuous in the order parameter.
Although a stability analysis shows that the disordered high-temperature
solution is stable at all temperatures, its entropy becomes negative at some
temperature T’ < T,,. This suggests that replica symmetry is broken. By
performing the first step in Parisi’s replica-symmetry-breaking scheme one
obtains the spin-glass phase SG1. The nature of the spin-glass phase SG2,
however, is not completely understood, since the full replica-symmetry-
breaking scheme would have to be performed in this case.

Studying a solvable random spin model with p spin interactions must
therefore be of some value. It turns out that already in the annealed case
our n-vector model with p spin interactions displays a considerable richness
of solutions and subtleties regarding their stability. These annealed
solutions will further constitute the basis for the quenching of the model by
means of the n-replica trick.

The paper is organized as follows. In Section 2 we present our model
and derive the order parameter equations by means of a saddle point
method and a theorem from the theory of matrices. In Section 3 we present
the complete solution for the n =2 model and in Section 4 we present it for
the n =3 model. We find that out of all possible solutions for the order
parameter matrix @ (defined in the next section), only the diagonal
solutions with at most two distinct eigenvalues are stable. By extrapolating
this result to the case of general n, we then derive in Section 5 explicit
forms of the order parameter equations for all stable solutions.
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2. MODEL AND ORDER PARAMETER EQUATIONS

The model studied is defined by a generalized Hamiltonian

—pH = y Jioiy 20 Sie oSt (2.1)
i< <p<EN a=1
where S, is an n-vector spin S;=(S!, S?,.., §7), normalized to ||S,| = ﬁ
The coupling constants J; . ;, are independent random variables with an
appropriately scaled Gaussian distribution so as to give rise to an intensive
free energy per spin

_ Np——l 1/2 (Jilu-i)sz_l _ .
P(Jil---i,,): [le exp 1:————-—‘"-—p! (AJ)2 :|, AJ:ﬁ a4J (22)

AT represents the width of the Gaussian distribution, which for simplicity
is assumed to be centered at J,=0. The case of a nonzero mean can be
treated in a canonical fashion.

For n=1 our model represents the random Curie—Weiss model with
p spin interactions. For #=2 we obtain the random planar rotator model
with p spin interactions. For n =3 we have the random classical Heisenberg
model with p spin interactions. The case p =2 is the random Stanley model.
All of these models have well-known submodels, such as the Sherrington—
Kirkpatrick model for n=1 and p=2 and the random energy model for
n=1 and p — . However, we do not recover the random spherical model
for p=2 and n — o0, since this would require n= N and hence a different
limiting procedure and scaling.

From Egs. (2.1) and (2.2) we form the annealed partition function

zo={" T PUd,

T < - <N

ip

n 7

xTr{Sl}exp[Z Y JoyShe ST (23)

a=1 1K< - <N .

Evaluating the Gaussian integral gives

pl(40)? n . 2]
(Zy)=Trg, exp[m\m_1 ¥ Y SE .82
i< - <N Na=1 _
pLJIy” ¢ \ )
=Tr, exp[m\”h1 Y ¥ §288. ... .5280
af=11si< - < <N
(47) u B
=Trs, exp {4NPT N7 Y i+ O™ (2.4)
2, =1
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where we have defined
N
quENZ S*§t=0(1) as N-w (2.5)

We evaluate the trace in Eq. (2.4) by introducing a Lagrange multiplier
matrix A,. In the limit of large N, (Z,) becomes

2

Moo [ ioo di, N\"
25 [ Mgy [ T2 ex0ING g 1)) (3] (26)

—% 48 7ioca)ﬂ 27'5 2
where
(472 1 12 )
G(Gup, Aup) = - Y a% -3 Y. Aapdap+ 10 Tr g €XP 3 Y. A,S5*SP
o, f a, B a,f=1
(2.7)

Equation (2.6) can then be evaluated by the method of steepest descent
(Zy> X225 exp[NG*]-C (2.8)

where C is a constant independent of N and where G* is the dominant
saddle point of G.

From now on, Q denotes the n x n matrix with elements g,, and Q%®
denotes the n x n matrix with elements gj,. Similarly, 4 (4®) denotes the
n x n matrix with elements 1,5 (i’;ﬁ). The matrices 4 and Q are defined by
the saddle point equations

oG oG

= =0 2.9
Ay 0q.p (29)
Evaluating these equations yields
pa))?
Aop= 5 qby! (2.10)

_ Visy = /n S*SP exp[387481dS
V1= mexp[38748] dS

where S7 is the transposed vector S. By using Eq. (2.10), one can show that
for odd p only solutions with g,; >0 can constitute saddle points of G. This
is a manifestation of the fact that for odd p and in the limit of large N only
states with g,5 >0 will contribute to the trace in Eq. (2.4). Thus, we have
the condition

g.s=0 if p=odd (2.12)
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imposed by our model on the order parameters g,,. Inserting Eq. (2.10)

into Eq. (2.11) finally gives the following equation for the order parameter

matrix Q:

Vsj— /= SST exp[p(4])> STQY~VS] dS
§isi— smexplap(47)>STQP 18] dS

We are now going to formally evaluate this order parameter equation.
Because of Eq. (2.5), the order parameter matrix ¢ must be symmetric.
Thus, there exists an orthonormal coordinate transformation

S=08§ (2.14)

0= (2.13)

which diagonalizes Q7 1),
070~ Y0 =diag(’,,..., A,) (2.15)

Here we have denoted by A,,.., 4, the eigenvalues of Q=" and by O a
suitable orthonormal matrix.
Any orthonormal coordinate transformation will map the n-sphere

F={S ISl =/n) (2.16)

onto itself. If we make the coordinate transformation (2.14) in Eq. (2.13),
we therefore get

o7 jnsn = exp[4p(AJ)2 Zyﬂ A (S )’1d
0'Q0 = 2.17
Tisi- feXP[4P(AJ) s asnas G

where we have also used the fact that 070 = 1.
Let us now define the functions
p(4J)? 2] .

gl /n)= €x das 2.18
\/_) Ju§n=\/'7 p[ ) ( )
Sap(/n) = 5*S# ex [ A(S7) } 2.19
sm=] SSrexp Z A (2.19)

In order to avoid the \/; constraint in these integrals, we form the Laplace
transform

ful/%)
f exp[ —Ax]
| WA

- j:’ exp[ —ir2] fu(r) dr
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[ S“Sﬁexp[ i@ p(47)* )(Sy)z}d@---dﬁ"

— O

n/2 n 2 —~1/2
:7‘2( ”(‘” ) 1‘[(1— 4‘]) 1y> /5@ (2.20)

where d,, represents the Kronecker d-symbol. In the same fashion we
evaluate the corresponding Laplace transform for g and find

L p(4g)? N\~
fo exp[ —ix] &Y ﬁ [](;,— ; v) (2.21)

By inverting the Laplace transforms given by Egs. (2.20) and (2.21) and
using our definitions of f, B(\/_ } and g( \/— ), we can then write the order
parameter equation (2.17) in the following form:

0700 = { ! JH_[OO exp[in] (i—p(ij)z )~a>
N H (i_p(A4)J2 j'y>1/2 dll'éaﬂ}

x[zijmw exp[in] H <)V_P(4;J)2/1y>vl/2dﬂv]l (2.22)

27'[1 ¢ —ioo y=1

Since the right-hand side of this equation is a diagonal matrix, we find
that the similarity transformation with O not only diagonalizes Q" ~'), as
defined, but also Q. What is more, since our choice of O was arbitrary
as long as Eq. (2.15) was satisfied, we actually find that every ortho-
normal similarity transformation which diagonalizes Q! must also
diagonalize Q.

A theorem in matrix theory states that for arbitrary matrices 4 and B,
if B commutes with every matrix which commutes with A4, then B is a poly-
nomial in 4.’ By a slight modification of the proof, one can show that if
we have two symmetric matrices 4 and B, and if every orthonormal
similarity transformation which diagonalizes A also diagonalizes B, then B
is a polynomial in 4. This means that Q must be a polynomial in Q¢ 1),
Furthermore, since Q7 ~!) is symmetric, it is a simple matrix, and therefore
the degree of its minimum polynomial is equal to the number r of distinct
cigenvalues of Q”~1, Thus, Q must be a polynomial in Q¥~" of
maximum degree r — 1.

If we now denote by u,,.., , the eigenvalues of Q and as before by
Aiss A, the eigenvalues of O~ then Eq. (2.22) and the above remarks
lead us to the final form of the order parameter equations:
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m:{—l—f“m exp[in] <A~Mia>rl 11 <1—M1y>4/2 d/l}

2nide i 4 R 4
1 c+ioo . n p(AJ)Z —172 1 ~
X {2 ZT—J“M exp[4n] yIJl </1 - A, iy a=1,.,n
(2.23)
and
Q=al+a, Q% Y+ - 4a, Q¥ V]! (2.24)
where r is the number of distinct eigenvalues of Q') I represents the

unit matrix, and the a; are some real numbers. We further have the
constraint

7.>0 if p=odd (2.25)

imposed by our model on the order parameters q,;.

The challenge now is to find a matrix solution @ of Egs. (2.12) and
(2.13) or equivalently of Egs. (2.23)-(2.25).

The case n=1 is trivial. Equation (2.5) combined with the normaliza-
tion condition ||S| = \/r; already dictates that the (one-dimensional) matrix
Q simply equals 1 in this case. By inserting this into Eq. (2.7) and finally
into Eq. (2.8), we get

(Zy> 222 exp [<(A:)2 +In 2> N:| (2.26)

This result, which was obtained by the saddle point method above, is in
perfect agreement with the result we get by evaluating the trace in Eq. (2.4)
directly (which is possible for n=1).

All cases n>1 are nontrivial. We are going to present the complete
solution for the =2 case in the next section and for the n=3 case
in Section 4. For general n, we shall derive explicit forms of the order
parameter equations for all stable solutions in Section 5.

One final remark about the case p =2. The case p =2 is special since
the order parameter equation (2.24) can always be satisfied by choosing
a;=1, and a,=0if i # 1. Furthermore, we have y, = 4,, which means that
we only have to find a set of eigenvalues p, satisfying Eq. (2.23). All order
parameter matrices Q that have this same set of eigenvalues, ie., all
matrices which are generated from a diagonal matrix consisting of these
eigenvalues by an orthonormal similarity transformation, will then be a
legitimate solution.
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The only task for p =2, therefore, consists of finding a diagonal matrix

Qd:diag(:u'lr": Aun) (227)

which solves the order parameter equation (2.23). The most general solu-
tion of the order parameter equations (2.23) and (2.24) is then given by

0=070,0 (2.28)

where O is an arbitrary orthonormal matrix. This corresponds to the
invariance of the annealed partition function (2.3) under orthonormal
transformations of the spin vectors S; when p = 2.

3. n=2 MODEL

3.1. Solutions

The order parameter matrix Q in this case is two dimensional,
consisting of the order parameters ¢q,;, 4>, 421, and ¢,,.

However, these order parameters are not independent. Our normaliza-
tion condition for n-vectors requires that

(S +(S?*)?*=2 (3.1)

This equation imposes constraints on the vector components S' and S2,
0<(85*)Y<2 (3.2)
-1<8'$%<1 (3.3)

Because of Eq. (2.5), these constraints on the vector components then
translate into the following constraints for the order parameters:

gn=2—4qn (34)
91 =4 (3.5)
0<g;<2 (3.6)
—1<qg,<1 if p=even (3.7)
0<g,<1 if p=odd (3.8)

where we have incorporated the constraint imposed by Eq. (2.25) into the.
last equation.
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The most general order parameter matrix Q which solves the order
parameter equations (2.23)—(2.25) must therefore be of the form

q11 qi2
= 39
o <‘112 (2”"]11)> (39)

and has the eigenvalues
.Ul,zz1i[(411_1)2+q}2}1/2 (3.10)
The corresponding matrix Q'” ! has the eigenvalues

11,22%@{1—1'*“(2_‘]11)[)_} + {[‘]ffl _(2"111)}771]2‘*'4‘]%517“”}1/2)
(3.11)

We are now going to determine the order parameter equations.

The right hand sides of the order parameter equations (2.23) for n =2
are evaluated in Appendix A. By inserting the expressions (A10), (A12),
and (Al4) into Eq. (2.23) we get

L p(ATY? (s — i)
=1— 3.12
= @I o 20)) (312)
1 205 3
oty WGP Gy i) )

Io(%P(AJ)Z (A2 —441))

We see that u, + u, =2, as expected from Eq. (3.4) and the invariance of
the trace of a matrix under orthonormal similarity transformations. This
means that Egs. (3.12) and (3.13) are not independent. If we can satisfy Eq.
(3.12) for some ¢,, and g,,, then Eq. (3.13) will be satisfied automatically.

The order parameter equation (2.24) on the other hand tells us that
for n=2 we have

Q=ayl (Ay=14,) (3.14)

Q=aol+a, Q" P (A1 #4s) (3.15)

Inserting the expressions (3.10) and (3.11) for the eigenvalues into
Eq. (3.12) gives

[(g1— 1)2 +‘IT2]1/2

:Il{%P(AJ)z (g '—(2—gy,)7 "V +4qi V172
Io{%P(AJ)z [(fol - (2_411)17_1)2+4‘1%(2p_1)]1/2}

(3.16)
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and writing out the components of Eqs. (3.14) and (3.15) gives, for A, =4,

q11=104o
2—q =a, (3.17)
42=0
and for 4, # 4,
g =ag+a g’ (3.18)
2—qn=ao+a;(2—q,,)" ! (3.19)
qrz=aiq%; ! (3.20)

Finally, we have the constraint imposed by the order parameter equation
(2.25)

g»>0 if p=odd (3.21)

Equations (3.16)—(3.21) constitute the order parameter equations for the
case n=2. We are now going to solve them.

3.1.1. Case of One Distinct Eigenvalue A. In this case 4, =41,
and Eq. (3.17) already dictates

qii=¢»n=1, 412=0 (3.22)

It is easy to see that this solution is also consistent with Eq. (3.16) for all
AJ, ie., all temperatures 7, and all p since 7,(0)=0 and 7,(0)=1. Our
stability analysis, however, will reveal that ¢,, =¢,,=1, ¢,, =0 represents
only the high-temperature solution.

3.1.2. Case of Two Distinct Eigenvalues A, and A,. In this
case we have A, # 1, and we have to distinguish three different cases.

Case a. ¢,,#1 and q,, =0. Equation (3.20) is automatically satisfied
when ¢, =0. Since g,, # 1, we can further satisfy Eqgs. (3.18) and (3.19) by
choosing

2(q — Dl !
ag = +— — (3.23)
0 qll qfl 1_(2_q11)p 1

a = —
YTgr = (2—qy)" !

Thus, the only equation which remains to be satisfied is Eq. (3.16). It now
becomes
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211[%17(4”)2 (g ' = 2—q,)" 1]
Io[%P(AJ)Z (471_1“ (2—q.)" "]

g, —1 (3.25)

where we were able to omit any moduli since ¢q;, = (1+{g,— 1)),
(2—¢1)=(1—(g:,—1)), and since I,(—z)= —I(z), Io(—z)=Iy(z). This
is a transcendental equation which can be solved numerically. We see
immediately that whenever ¢,, = 1 + 4q is a solution, then g,, = 1 — Aq will
be a solution as well. This simply means that we can interchange the roles
of g,, and gq,,, which in turn is simply a manifestation of the symmetry of
the annealed partition function (2.3) under interchange of coordinates S}
and S2.

A numerical study of Eq. (3.25) shows that no solutions exist for small
A4J, 1e., at high temperatures T.

For p=2, 3, 4 we find one 4J, such that for all 47> 4J_, ie., for all
low temperatures T'< T,, we have exactly one solution 1<g,; <2 and
one solution O0<g,; <1 corresponding to the above-mentioned inter-
changeability of ¢,, and ¢,,.

For all p>4 there are two transition temperatures. For
4J, <A< 4], ie., for low temperatures T, > T > T,,, we have two solu-
tions 1 <g,;,<¢q,,,<2 and two solutions 0 <g,,,<¢,,, <1 (corresponding
to the interchangeability of ¢,, and g¢,,). When 4J>4J,,, ie, T<T,,
there exists only one solution 1 <g¢,, <2 and one solution 0 < g, < 1.

The phase transition points 4J, and 4J,, can be determined analyti-
cally as follows. The right-hand side (rhs) of Eq. (3.25) is equal to 0 for
g, =1. For g,;>1, it is always positive and bounded from above since
I,/I,< 1. The left-hand side (lhs) of Eq. (3.25) constitutes a straight line of
slope 1 through g,, = 1. Thus, we shall always get at least one intersection
of the lhs of Eq. (3.25) with the rhs if the derivative of the rhs at g,, =1
is greater than 1

0
9911

_plp=1n?

(rhs) Z

| (3.26)

g =1

This relation will be satisfied for all AJ greater than the critical value

4 1/2
AT, = [p(p_ 1)] (3.27)

It turns out that this critical value represents exactly the AJ. we found
above for p=2, 3, 4, and it represents 4J,, for p >4

4 1/2
Al = [p(p_ 1)} (3.28)
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Although there is not a simple analytical expression for 4J ., we always

have
4 T/z (3.29)
4J, < .
[p(p— 1)

Our stability analysis in Section 3.2 will show that the solutions ¢,
gy, and ¢y, g, represent the low-temperature states of our model,
whereas the solutions g,,, and g,,, are unstable.

A final note regarding the case p=2. We have just determined the
diagonal solution Q, of the order parameter equation (2.23) for n=2 and
p=2. As we have shown in Egs. (2.27) and (2.28), the most general
solution for the order parameter equations (3.16)-(3.21) in this case is
then given by

Q=0"diag(y,,2— ) 0 (3.30)

where O is an arbitrary orthonormal 2 x 2 matrix and where u; coincides
with the order parameter ¢,, of the matrix Q, which we obtained above.
Since the most general orthonormal 2 x 2 matrix O is of the form

0z <c05(¢/2) ~sin(¢/2)> (3.31)

sin(¢/2)  cos(¢/2)
we therefore find that the most general solution of the order parameter
equations (3.16)—(3.21) when p =2 is given by
g1 =1+ (u, —1) cos(¢)
g2 =1—(u;—1) cos(¢) (3:32)
q12=(py — 1) sin($)

where ¢ is an arbitrary angle. The stability analysis in Section 3.2 will show
that this solution is stable.

Case b. q,;=1, q;,#0, and p>2. Since ¢, #0 and ¢g,; =1, we
can satisfy the order parameter equations (3.18)-(3.20) simultaneously by
choosing

ao=1-q25" (333)
a,=qi;* (3.34)

The only equation which then remains to be satisfied is Eq. (3.16). It now
becomes

Li(;p(47) g7 ")
LG p(47)? |ql? 1)
Again this is a transcendental equation which can be solved numerically.

g2 = (3.35)
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A numerical study shows that no solutions exist for small 4J, i.e., at
high temperatures T.

For all p>2 we find one 4J.,>4J. or, respectively, one
AJ > 47, > 4J,,, such that for all 4J>4J,, ie., all very low tem-
peratures T<7,, we have two solutions 0<g;, <g,,, <! and two
solutions —1< g, <g,, <0. The negative solutions are simply obtained
by changing the sign of the positive solutions and arise from the symmetry
of Eq. (3.35). Negative solutions for p=odd do not exist because of
Eq. (2.25). Although there is no simple analytical expression for 4J,,, we

always have
4 172
a7, > (3.36)
’ [P(P—l)]

Our stability analysis in Section 3.2 will show that all solutions g,
and ¢,,, are unstable.

Case ¢. g, #1, q,#0, and p>2. Since g,; #1, Eqgs. (3.18) and
(3.19) have the unique solutions

2(‘]11_1)‘]{1_‘

g = + — —
0=41 g 1__(2_q11)p 1

(3.37)

2(q,,— 1)
a,=—— — (3.38
' g7 1_(2_‘]11)p ! )

By inserting Eq. (3.38) into the order parameter equation (3.20), and since
we require ¢,, #0, we get

_qfl_l_ (2_911)[,71 Wp=2
q =
2 L 2(q,—1) :l

(Lt gy =117 [~ (g 1)]1’1]‘“”-2)
L 2(q — 1)

p—1 p—l fp—2})
=|(p-D+ ¥ (k )(qu—l)"’J >(p—1)Ve=?

N k> 1, odd

(3.39)

For p>2, this is in contradiction to the constraint ¢, <1, Egs. (3.7) and
(3.8), imposed on ¢,, by our model. Thus, there are no solutions g, # 1,
g, #0 when p>2.
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3.2. Stationarity of the Free Energy

The Lagrange multipliers 4,, in Egs. (2.7) and (2.10) are only
auxiliary parameters which help to evaluate the free energy at the equi-
librium configuration of the parameters ¢,;. If we knew how to evaluate
the free energy without the detour of the auxiliary 4,5, we should obtain
exactly the same free energy as a function of the same equilibrium
configuration of the parameters g,,, but without any 4,5. Thus, the only
physical parameters of the free energy are the gq,4.

Stationarity of the free energy for our annealed system now means that
its free energy is a minimum with respect to fluctuations of the spin con-
figuration about the equilibrium point, ie., with respect to fluctuations of
the order parameters g, about their equilibrium values. However, from
Egs. (34) and (3.5) we have the constraints ¢,,=2-—g¢q,; and g,, =4,
resulting from our normalization condition for s#-vectors and from our
definition (2.5) of g¢,;. The order parameters g,; can therefore only
fluctuate within these two constraints imposed by the model, and the
free energy becomes a function of two independent order parameters ¢,
and ¢,,.

From Egs. (2.7), (2.8), and (2.12) we then obtain the free energy per
spin for the n =2 model as

a 1
= (—ynezo)

—1)(4J)?
2= g 4 (2 )+ 214007

4J)?
“nf e P sy e-ar (577
2
p(AzJ) q:2l”" Slsz} ds' ds? (3.40)
— 1)(4J)?
=(—’%)— Lgfi+(2—q1)7+2 191171
_plary

4 gy "+ (2—q.)" "]

A4J)?
~In I, (p( ) {[qfr‘—(z—qu)p1]2+4q%§"“}“2>—1n 2n/2
(3.41)
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where we have made the coordinate transformation (2.15) and used Egs.
(2.18), (2.21), and (A10) in the evaluation of the integral in the last step.
The free energy (3.41) will be stationary (stable) if it constitutes a local
minimum with respect to fluctuations 6,; and é,, about the solution points
g, and ¢q,,. This has to be investigated for all possible solutions of the
order parameter equations which we obtained in the previous section.

Case a. ¢, =1 and ¢,,=0. The free energy in Eq. (3.41) will be
stable if its Hessian matrix with respect to ¢, and ¢,, is positive definite.
Evaluating the Hessian matrix

0> a 0> a
041, 0q11 kT 0qyy 0912 kT

o a 0*  a
0411091, kT 04,2 0912 kT,

H

(3.42)

at the solution point ¢,, =1, g,, =0 yields the two eigenvalues

_p(p—1)(47) [1 _plp— 1)(AJ)2]

£, (3.43)

2 4

- {%(AJ)z [2—(4]7], p=2 (3.44)

0, p>2

This means that for p =2 the solution (3.22) is stable if 4J < \/E and
unstable if 47> /2.

For p>2 the solution (3.22) is unstable if 47> {4/[p(p—1)]}"~
If AJ<{4/[p(p—1)]}"% however, the Hessian becomes positive
semidefinite and leaves us in aporia. We then have to look for higher-order
fluctuations. One can show that for p > 2 and infinitesimal fluctuations 4,4
we have

p(ay? & p(4Jy _
In ex [—— P ) R AC NP TSP IR PP
jusn —n Pl El T (57) 2 mgﬂ g

dS+ Y 0(8%7%)  (345)

x<f

p(4Jy? & }
=1 p~—1Qxy2
! fnsu ~/n P [ 4 El 9 (57)

By using this relation, we find the following expansion for the free energy
(3.40), (3.41) about the solution point g,; =1, g,,=0:

a (47 1
7 _|:—2—+ln 2 \/E]—Fifﬂsfl

+(P—1)(AJ)2

5 161217+ 0(571,) + 0(6%7?) (3.46)
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where &, is given by Eq. (3.43). From this expansion we see that for
all p>2 stability arises from pth-order fluctuations in ¢, if
A4J<{4/[p(p—1)]1}"% We shall call this tenuous stability “pth-order
stability.”

In summary, the solution ¢, =1, ¢,,=0 is stable if A4J<
{4/[p(p—-1)]1}* ie, if T>T, and becomes unstable if AJ>
{4/[p(p—1)]}"? ie., if T<T,. Thus, it represents the high-temperature
solution for all p.

Case b. ¢,;#1 and q,,=0.
p=2: In this case the free energy from Eq. (3.40) becomes

2 2 5
kaT (Ai) Z T 0 fusn—ﬁexp [@STQS] @ B4

a,f=1

Zi,ﬁ=l quli represents the square of the Euclidean matrix norm for the
matrix Q. It is easy to show that the Euclidean matrix norm is invariant
under orthonormal similarity transformations. Further, the integral on the
right-hand side of Eq. (3.47) is invariant under orthonormal similarity
transformations, as we saw in Section 2. Thus, for p =2, a/kT is invariant
under orthonormal similarity transformations of the matrix Q. This
corresponds to the invariance of the annealed partition function (2.3) under
orthonormal transformations of the spin vectors S; when p =2. Finally, we
have the constraint y, =2 — u, resulting from our normalization condition
for n-vectors.

The stability of a/kT is therefore completely determined by the fluctua-
tions of the eigenvalue p, about its equilibrium value. Rewriting Eq. (3.47)
in terms of the eigenvalue u, gives

(AJ)

[ui+ (2= p)]

- (47)° 132 B 2y2 }
an.n5|=\/§eXp{ ) (S +(2—pu)S*) 1 d

4
kT

(41)*  (4J)?
= —1In2n f—T)+ 3 (= 1> —In L[(4T)* (u,—1)]  (3.48)
where we have used Egs. (2.18), (2.21), and (A10) in the evaluation of the
integral in the last step. This free energy will be a minimum with respect
to fluctuations &, about the equilibrium values y, if its second derivative at
i, is positive. By taking the second derivative of Eq. (3.48), we get

0° a

5u1kT =(AD)* (g — 1>+ (4J)? [2— (4J)*] (3.49)
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where we have used the fact that

2

g1 :11[(47)2 (1 —1)] (3.50)
L[(47)" (u;—1)]
from Eq. (3.25) when p=2.

A numerical plot of the right-hand side of Eq. (3.49) for the solutions
(, obtained in the previous section shows that ¢°/0ui(a/kT)>0 for the
entire low-temperature continuum AJ > \/5 Combined with our remarks
above, this means that the low-temperature solution (3.32) for p=2 is

stable for all 47> ./2, ie, forall T<T..

p > 2: Evaluating the Hessian for the free energy (3.41) at the solution
points g, given by Eq. (3.25) and q,,=0 shows that one eigenvalue is
identically equal to 0, for all p’s. Thus, the Hessian is semidefinite and
cannot give us a conclusive answer with respect to the stability of our
solutions. We therefore have to look again at higher-order fluctuations.

By using the relation (3.45), we find the following expansion for the
free energy (3.40), (3.41) about the solution points ¢, #0, g, =0:

AJ)?
= - —1n2n\/§—’~’—(4—)[q{’;‘+(2~qu)”*‘]

—1)(47)*
22 14r 4 29,011

AJ)?
—Inl, {p( 2 ) [4{)1_1_(2_‘]11)1]1]}

(p=1)(4J)
4

1
+3800 + 61517+ 0(67)+0(6%7%)  (3.51)

g1 1s hereby a solution of Eq. (3.25). &, is the first eigenvalue of the
Hessian (3.42) and is now given by

_p(p—1)(4J)

g I g7 *+(2—q.1)7 7] {I _P_(E;l)("_J)f

4
x gl *+(2—q,)7 7]

A 2 —1
o R e e |

(3.52)

A numerical plot of £, for the solutions ¢,; obtained in the previous
section shows that &, is positive for all ¢,, when p=3, 4 and for the solu-
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tions g,,, when p>4. For the solutions g,;,, on the other hand, ¢, is
negative. This means that for p =3, 4, all low-temperature solutions ¢,, are
stable. For p >4, only the low-temperature solutions g, are stable. Again,
the stability arises from pth-order fluctuations in ¢,,.

Case c. ¢q, =1, q;»#0, and p>2. Evaluating the Hessian matrix
(3.42) for the free energy (3.41) at the solution points ¢,, =1 and ¢q,, given
by Eq. (3.35) yields the two eigenvalues

. _plp—1)(4J) p—1

G="" <I“|q12|”*2> (5%
2(p—1)(AT)? —1)(4])

¢2=”—(”2#|q12|"2[1—%|quv’-2(1—qz>] (3.54)

where we have used Eq. (3.35) in the evaluation of the right-hand sides.

In the previous section we have seen that [g,,] <1 for all p; see
Egs. (3.7) and (3.8). Thus, for p>2 the eigenvalue &, will be negative.
There are no stable solutions with ¢,, # 0 when p > 2.

3.3. Summary

The free energy per spin for the n =2 model was derived in Eq. (3.41)
in the thermodynamic limit N — oo by the method of steepest descent from
Eq. (2.6). It will only hold for stable solutions of the order parameter equa-
tions. If we find more than one stable solution at a certain temperature T
(as is the case for p >4), the solution which yields the lowest free energy
(3.41) will constitute the true equilibrium configuration. This makes both
physical sense and arises mathematically from choosing the dominant
saddle point in the evaluation of Eq. (2.6) by the method of steepest
descent.

For p> 4 we found that between the temperatures T, and T, both the
high-temperature solution ¢, =¢,, =1, ¢;,=0 and the “antisymmetric”
diagonal solution gq,,, # ¢,,,, 4, =0 are stable. A numerical comparison of
the free energy (3.41) for these two solutions for various p >4 shows that
in all cases we find exactly one AJ, with 4J, <AJ <AJ . For 4J<A4J,,
ie., for T>T,, the high-temperature free energy remains the lower free
energy, whereas for 4J>A4J., ie., for T<T,, the “antisymmetric” free
energy has a lower value. Hence, even for p > 4, we actually have only one
phase transition at a certain 4J, < {4/[p(p—1)]}"~

Combined with the results from the previous sections, this allows us to
describe the various cases for the n =2 model as follows.
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3.3.1. Case p=2. The model can be described by one order
pajlpeter 1, and we have one phase transition at 4J.= {4/[ p(p—1)]}'/
=./2.
For AJ> AJ_, ie., T< T,, the order parameter 1 <y, <2 is a solution
of Eq. (3.25). For 4J< A4J_, ie., T>T,, u, is identically equal to 1.

The two-dimensional order parameter matrix Q is given in terms of yu,
by Eq. (3.32). The free energy per spin is given by Eq. (3.41).

Thus, for T> T, we have the high-temperature solution ¢,, =¢,, =1,
q12=0.

At T=T. we have a phase transition. It is a first-order phase

transition since —da/dT has a discontinuity at 7= 7,. However, the spin
configuration (g, 412, 412} is a continuous function of T at T.
For T<T,, we obtain a degenerate low-temperature continuum of
states which lie on a circle of radius u,—1 about g, =1, ¢, =0 in
configurational order parameter space. The degeneracy results from the
invariance of the annealed partition function (2.3) under orthonormal
transformations (two-dimensional rotations) of the spin vectors S; when
p=2

3.3.2. Case p=3,4. The model can be described by one order
parameter g¢,,, and we have one phase transition at A4J,=
{4/Lp(p—1)1}"2

For 47> A4J_, i.e., T< T, the order parameter 1 < g,, <2 is a solution
of Eq. (3.25). For 4/ < 4J_, ie., T>T,, g, is identically equal to 1.

The two-dimensional order parameter matrix Q is given by ¢,
q.:=2—q4;, and g, =0. The free energy per spin is given by Eq. (3.41).

Thus, as for p =2, we have the high-temperature solution ¢, = ¢,, =1,
g;»=0when T>T..

At T=T, we have a phase transition. As for p=2, it is a first-order
phase transition with the spin configuration (g, 42,,9;,) being a
continuous function of T at T..

For T< T,, we obtain a diagonal “antisymmetric” solution q,; # ¢,
g1, =0 with twofold degeneracy. The degeneracy arises from the inter-
changeability of ¢, and ¢,, which corresponds to the symmetry in the first
and second vector components in the annealed partition function (2.3).

3.3.3. Case p>4. These models are almost completely analogous
to the cases p=3, 4. The (main) difference is that the phase transition at
T, is not only a first-order transition, but the spin configuration
{411, 92, g12) displays a jump discontinuity at 7. as well: g,,=1 for
T>T, and 1+4<gq,, <2 for some 4 when T'< T..

Further, we do not have an analytic expression for 4J,. However, we

822/68/5-6-18
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know that AJ. < {4/[ p(p—1)]}"% Numerically we find 4J,=0.43422 for
p=>5and 4J,=0.31918 for p=6.

Since 4J. < {4/[p(p—1)]}" we find 47, -0, ie, T, — o0 as p — 0.
From Eq. (3.25) we further see that for finite 4J and p — oo the only
possible configurations are ¢, =2, ¢,,=0, ¢;,=0 and ¢,,=0, ¢,,=2,
g1, =0. This is also what we expect physically as the ordering element of
interactions becomes dominant when p — 0.

4. n=3 MODEL

4.1. Solutions

Because of Eq. (2.5), the three-dimensional order parameter matrix Q
is symmetric. However, as in the case n =2, its order parameters ¢,;, ¢,
433> 912> 13> and g,; are not independent. Our normalization condition for
n-vectors, ||S;| =\/§, imposes constraints on the vector components S,
S2 and S3, which, because of Eq. (2.5), then translate into the following
constraints for the order parameters:

g33=3—q1 — 94 (4.1)
0<g,,<3 (4.2)
—1.5<q,,<15 if p=even (4.3)
0<qg,p<1s if p=odd (4.4)

where we have incorporated the constraint imposed by Eq. (2.25) into the
last equation. In accordance with our previous notation, Q has the eigen-
values u,, p,, and p;, while the corresponding matrix Q" has the
eigenvalues 4,, 4,, and 4;.

The right-hand sides of the order parameter equations (2.23) for n=3
are evaluated in Appendix A. By inserting the expressions (A17) and (A21)
into Eq. (2.23), we get .

. Joexpl—a,ul(1 —u)"* Iy(b,u) du
He 2 T expl—ayud(1—u)~ 2 Io(b,u) du’

x=1,2,3 (45)

with

&£

3"(§J)2 (20— hg— 1) (4.6)

3p(4J)?
8

b, = (Ag—4,) (4.7)
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One can easily show that u, + y, + u5 =3, as expected from Eq. (4.1) and
the invariance of the trace of a matrix under orthonormal similarity trans-
formations. This means that Egs. (4.5) for « =1, 2, 3 are not independent.
If we can satisfy Eqgs. (4.5) for o =1 and o =2, then the equation for x =3
will be satisfied automatically.
The order parameter equation (2.24) for n=3, on the other hand,
becomes
Q=a,l (Ai=24,=43) (4.8)

Q=ayl+a, Qg% "V (u=Ag#4,) 4.9)
Q:aol'*”alQ(pf1)+a2[Q(p_l)]2 (A # Ay #3) (4.10)

Finally, we have the constraint imposed by the order parameter equation
(2.25)
G.3=0 if p=odd (4.11)

Equations (4.5)—(4.11) constitute the order parameter equations for the
case n=3. We are now going to solve them.

4.1.1. Case of One Distinct Eigenvalue A. In this case we
have 4, =4, =4, and Eq. (4.8) already dictates

du=¢»=93=1, di2=913=¢»=0 (4.12)

This solution is also consistent with Eq. (4.5) for all 4J, ie., all tem-
peratures 7, and all p since 7,(0)=1 and u, =u,=p;=1. Our stability
analysis, however, will reveal that, as for n =2, the solution ¢, =1, g,,=0
represents only the high-temperature solution.

4.1.2. Case of Two Distinct Eigenvalues A, and A,. In this
case we have A,=/4,#4,. Hence, a,=b, and the integrals in the order
parameter equation (4.5) can be further evaluated. This is done in
Appendix A. By inserting the expressions (A22), (A26), and (A27) into
Eqg. (2.23), we get

3 |:1+22 (z)“z e’ }
Up= g ="— -\ = 4.13
#ﬂ 2z 2 T erfi(\/g) ( )
with
3p(4J)?
= p(4 S (1, - 1) (4.14)

The corresponding order parameter equation for u., yields nothing new.
Equation (4.13) replaces the order parameter equations {4.5) when we have
only two distinct eigenvalues.
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Choosing a; =0 in the order parameter equation (4.9) simply recovers
the case of one distinct eigenvalue A. Thus, we require

a,#0 (4.15)

For p=2 we can always satisfy Eq. (4.9) by choosing a,=1 and
a,=0. As we have shown in Section 2, Eqs. (2.27) and (2.28), when p =2
it suffices to find a diagonal solution Q, of Eq. (4.13). The most general
solution @ is then obtained by an arbitrary orthonormal similarity trans-
formation of Q.

For p> 2, the off-diagonal elements of the order parameter equation
(4.9) are

Qop=019%5 " (4.16)
Since p>2 and a, #0, g,; can then only assume the values
9up =90, 0 4.17)

for some ¢,. Here we have also used Eq. (4.11).
The diagonal elements of the order parameter equation (4.9), on the
other hand, are

f@w)=a,90 ' — g +a,=0 (4.18)

The derivative f(q,,) of f can have at most one zero for ¢,, >0 and real.
This means that Eq. (4.18) will have at most two real solutions ¢,, > 0. The
condition ¢,, >0 is required by Eq. (4.2).

The most general order parameter matrix @ which we have to
investigate for p>2 can therefore have at most two distinct diagonal
elements and its off-diagonal elements can only take on the values 0 or g,.
Modulo constant orthonormal similarity transformations, which simply
rearrange the diagonal elements of Q, this reduces the problem of finding
Q to eight different cases:

Case 1! q11=G», 433=3—2411, §n=¢13=G¢»=0.

Case 20 qy1=qxn, 433=3—2411, 412=9,, 913=q23=0, and p>2.
Case 3: q11=qx, 933=3—2411, §12=923=0, q;3=q,, and p>2.
Case 4: q11=q»; 933=3—2411, §12=913=0, g33=¢,, and p>2.
Case 51 q11=92, 433=3—2411; 412=q13=9,, 423=0, and p>12.
Case 61 qy1=q», 43=3—241;, 42=923=9,> 12=0, and p>2.
Case 70 g1 =92, 453=3—2¢11, 4:2=0, 4;3=¢»3=¢,, and p>2.
Case 8 q\1=¢2, 433=3—29y, §12=913=923=4,, and p>2.
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One can analyze these cases by using the following facts. Q and Q7!
have the same number of distinct eigenvalues, since Q is a polynomial in
Q=Y. Qs a linear polynomial in Q" Y, For n > 2, the only possible real
solutions of

(a+b)'=a"+0" (4.19)
are
a=0 or b=0 (n=-even) (4.20)
a=0 or b=0 or a=—b (n=o0dd)

For n =2, the only possible real solutions of
{(a+b)'=a"—b" (4.21)
are

{b=0 or a= —b (n=even) (422)

b=0 (n=o0dd)
In order to get two identical eigenvalues u, the characteristic polynomial
of O
ch(p)= — > +3u’ —bu+c (4.23)
must satisfy the condition
c=+2(1—-5/3)**+b-2 (4.24)

The detailed analysis of cases 1-8 is lengthy and therefore we shall
merely state the results here.

There are only two possible solutions @ of the order parameter
equations (4.9) and (4.13) for T>0. In addition, there are four singular
solutions which exist only at 7=0.

The first nonsingular solution is the, for p > 2 diagonal, solution

Q=P7 diag(yy, 1,3 —=2m)- P (p>2)
Q=07 -diag(p,, #;,3—2p,)- 0 (p=2)

where the similarity transformation with P represents an arbitrary per-
mutation of the diagonal elements of diag( --- ) and where O is an arbitrary
orthonormal matrix. The order parameter u, is a solution of

3 [1+22 (2)1/2 e’
=5 -\
Yz 2 ) erfi(\/z)

(4.25)

] (4.26)
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with

3p(4J)?
4

[B—2u)" ' —pf™"] (4.27)

z =

This is a transcendental equation which can be solved numerically.

A numerical study of Eq. (4.26) shows that no solutions exist for small
4J, 1e., at high temperatures T.

For all p we find one 4J,, such that for all 47> 4J_, ie., for all low
temperatures 7<7,, we have exactly two solutions 0<yu; <pu;,<L1.5.
This dichotomy does not correspond to any obvious symmetry of the
annealed partition function (2.3). Furthermore, there is no simple analyti-
cal expression for 4J, . In contrast to the n=2 model, the diagonal solu-
tions for the n=3 model follow the same pattern for all p and do not
change pattern if p > 4.

The stability analysis in Section 4.2 will show that only the solutions
U, are stable.

The second nonsingular solution Q of the order parameter equations
(4.9) and (4.13) is

L q, g,
O0={q, 1 ¢, (4.28)
4, 9, 1

Its order parameter g, is a solution of

3 [1—{-22 <z>1/2 e’ :|
1—gq,=— —{Z S 4.29)
=712 n erﬁ(\/}) (
with
2
zz—p(iu) gr! (4.30)

This is a transcendental equation which can be solved numerically.

A numerical study of Eq. (4.29) shows that no solutions exist for small
4J, ie., at high temperatures 7.

The case p =2 is contained in Eq. (4.25). For all odd p > 2 we find one
AJ.,> AJ, such that for all 47> 4J,,, ie., for all very low temperatures
T< T, we have two solutions 0 <g¢,, <gq, <1. For all even p>2 we find
two transition points AJ,, and A4J,. If AJ,<AJ<AJ., ie, for all
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(intermediate) low temperatures T,.,>7>T, we have two solutions
0<qg,<4q,<1. Above 4J, ie., for all very low temperatures T < T, we
find two negative solutions —0.5<g¢,,<g, in addition to the positive
solutions ¢, and g, . Again, there are no simple analytical expressions for
A4J,, and AJ,.

Our stability analysis in Section 4.2 will show that all these solutions
are’ unstable.

Finally, we list the four singular solutions which exist only at 77=0,

0 +3 0 15 +15 0
Q.= +3 0 0, Q.=[%15 15 0 (4.31)
0 0 0 0 0 0

The @, exist for even and odd p’s, while the Q _ exist only when p
is even. These solutions are understood modulo constant orthonormal
similarity transformations which rearrange the diagonal elements. The
stability analysis in Section 4.2 shows that these solutions are excluded as
well.

4.1.3. Case of Three Distinct Eigenvalues A, #A,#A;. In
this case the order parameter equations (4.5) cannot be further simplified
and have to be evaluated numerically. We have performed an extensive
numerical investigation and found that no solutions Q with 4,# 1, 4,
exist.

4.2. Stationarity of the Free Energy

By arguments analogous to the ones used for the stability analysis of
the n =2 model we can restrict our stability analysis to fluctuations d,,,
823, 013, 813, and J,; of the order parameters ¢, g1, 412, 13> and ¢,3,
respectively. The order parameters 1,, are again just auxiliary quantities
and the order parameter g3, is constrained to g;;=(3—¢,; —¢>,) by our
normalization condition for n-vectors. Further, the matrix Q must be
symmetric because of Eq. (2.5).

The free energy for the n =3 model is obtained from Egs. (2.7), (2.8),
and (2.12) in terms of these parameters as

a

. 1
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(p—1)(4J)
== Lgf + 95+ (3 —q11—q2)"]

—1)(4J)?
+(p—‘)(—)(|412lp+ |g1317 + 1g2317)

2
P(Aj)z p—1/Q1y2 p—17Q2y2
In j"S”:ﬁeXP{ 4 Lgfy (S7)" +4%, (S7)

+(3—g11—g2)" " (S?)]

AJ)?
+p( 5 ) (qu‘lslsQ+qf3—lsls3+q§3—lszs3)} das (432)
(p—1)(4J)
= el 45+ B 1= 42)']

2

2D (17 4 1g1al7 4 1)

erfi{ [3p(47)*/41(4, — 4,)}">  3p(4])?

@A, -2}

In the evaluation of the integral in the last step we have exploited the fact

that there are no solutions with 1, # 4, # 1; and we have made the coor-

dinate transformation (2.15) and used Eqgs. (2.18), (2.21), and (A27). The

eigenvalues of 9~V are denoted by A, =, # 4, as in the previous section.

The free energy (4.32) will be stationary (stable) if it constitutes a local

minimum with respect to fluctuations d,;, 5, 042, 013, and d,; about the

solution points ¢;;,..., §,;. This has to be investigated for all the possible

solutions @ of the order parameter equations which we obtained in the
previous section.

J,—In 67% (4.33)

4.21. Case Q=diag(1,1,1). The free energy in Eq. (4.32) will
be stable if its Hessian matrix with respect to ¢,;,..., ¢,3 is positive definite.
Evaluating the Hessian matrix

02 a > a o  a ?  a A
0411 5‘111ﬁ 994, 8q22ﬁ 0411091, kKT 0qy, 093 kT 0411 0923 kT
2 a 2 a 2 a ?  a ’  a
39115422ﬁ 042 5‘122ﬁ 992 5912/7{7 042, 09,3 kT 043, 0923 kT
?  a > a ? a ?  a ? a
59116412ﬁ 542259112k_f 0912 6q12-k—T 041, 0913 kT 0q1; 0923 kT
2 a 02 a 2 a ?  a ?  a
0911 5q13ﬁ 042, 5913k_T 0912 aqlsﬁ 09130913 kT 0qy3 a%skT/

o
I

ik a *  a ok a o2 a ?  a
0911 0q23 kT 043, 093 kT 0q15 0qy3 kT 0qy3 0q2; kKT 0qa3 0q23 kT
(4.34)
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at the solution point ¢, =g¢g,=1, ¢,=¢3=¢,3=0 gives, after a
considerable amount of algebra, and by using Egs. (B5), (B8), and (B10)
from Appendix B in the evaluation of the occurring integrals,

hy h, 0 0 0

hy hy 0 0 0
H=1 0 0 4 O O (4.35)
0 0 0 A O
0 0 0 0 h
with
_plp=1)(4I)?’ [ 3p(p—1)(4J)
h = 5 [1 % } (4.36)
hy=h/2 (4.37)
_{(4d)? [1—2(49)*] (p=2)
h3—{0 (r>2) (4.38)

The two eigenvalues of the 4, A, submatrix of the Hessian (4.35) are

¢ _plp—1)(4J)? [1 _3p(p— 1)(AJ)2]
e 4 10

(4.39)
52 = 361

These equations show that for p=2 the high-temperature solution
is stable if AJ<{10/[3p(p—1)]}"*=(5/3)"* and unstable if AJ>
{10/[3p(p — 1)1}

For p>?2, the high-temperature solution will become unstable if
47> {10/[3p(p—1)]1}"% I AJ<{10/[3p(p—1)]}"%, however, the
Hessian is positive semidefinite and we have to look for higher-order
fluctuations, as for the n=2 model. By using the relation (3.45), we find
the following expansion for the free energy (4.32) about the solution

point ;3 =¢»n=1, g =¢13=¢»=0:
_ 3(4J)?

a
= —1In 12
kT 4 In 127

(). (00 a2

d.,17 5..l7 p
o) 7 (01217 + 161517 +1851)

+ 0(8,,63,) + 0(63,0,,) + 0(63)) + 0(83,)
+0(0 %)+ 0%+ 0(6%7%) (4.40)
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Equation (4.39) tells us that the Ah,, A, matrix is positive definite if
4J < {10/[3p(p—1)1}"* and indefinite if 47> {10/[3p(p—1)]} "~

Thus, for all p>2 the free energy corresponding to the high-
temperature solution is stationary for A4J< {10/[3p(p—1)]}"* due to
pth-order fluctuations in d,,, 8,5, and J,;, and becomes unstable if

47> {10/[3p(p— 1)1}

4.22. p=2 and Q=0"-diag(p,, 4,.3-2p,)-0. For p=2,
the free energy from Eq. (4.32) becomes

a (A &, [(AJ)2 r ]
—= —1 exp| ——S'9S | dS 441
kT 4 ,pz=1 =0 jusn =3 'L ¢ (40

o4

Y. s-1 4. Tepresents the square of the Euclidean matrix norm of the
matrix Q. It is easy to show that the Euclidean matrix norm is invariant
under orthonormal similarity transformations. Further, the integral on the
right-hand side of Eq. (4.41) is invariant under orthonormal similarity
transformations, as we saw in Section 2. Thus, for p =2, a/kT is invariant
under orthonormal similarity transformations of the matrix Q. This is
analogous to the n=2, p=2 model, and corresponds to the invariance of
the annealed partition function (2.3) under orthonormal transformations
of the spin vectors S, when p=2. Finally, we have the constraint
U3 =3 — p; — y, resulting from our normalization condition for n-vectors.
The stability of a/kT is therefore completely determined by the fluctua-
tions of the eigenvalues p, and y, about their equilibrium values y; = y,.
Rewriting Eq. (4.41) in terms of the eigenvalues y, and g, gives

a (4J)? )
k—T=( 4) (uf+u3+ (3 —py— 1)1

(AJ)2 132 232
] e { G (s (s?)

+(3—u1—#2)(33)2]}d5 (442)

This free energy will be a minimum with respect to fluctuations &, and 9,
about the equilibrium values u, = yu, if its Hessian matrix with respect to
tq, and u, is positive definite.

We can evaluate this Hessian at the equilibrium values p, =u, by
using the relations (B5), (B8), and (B10) from Appendix B. After a
considerable amount of algebra we obtain the following two eigenvalues for
the Hessian of Eq. (4.42):
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(AJ)Z{ |:6M[2,2,Z] M[Z,Z,Z] 9M[2,2,]
G LNy
R S R v SMIL 2,20
M[z; 2aZ]2 M[g,§,2]2+2M[z, 2,Z:]M[-32—, %,Z]]}
[2,2,212 M[272>2]2 M[z,%,z]z
_(AJ)Z é 2 [2’ 2: ]
e L L iw ] 4
with
3 A0)?
A (32 1] (4.44)

and where M[a, f, z] represents Kummer’s hypergeometric function F,
defined in Appendix A, Eq. (A8).

A numerical plot of {; and ¢, for the two possible solutions y,, and
t1, obtained in Section 4.1 shows that the Hessian is indefinite for y,, at all
temperatures. In the case of u,, however, it is positive definite for all
AJ> AT, ~ 1.22306.

Combined with our remarks above, this means that the low-
temperature solution (4.25) for p=2 is unstable if y;, =pu,,. For u,=yu,,
however, it is stable for all 4J>4J,., ie, for all T<T - Since
aJ,, < {10/[3p(p—1)1}"% both the high-temperature solution and the
solution (4.25) with p,, are stable for 4J, < 4J < {10/[3p(p—1)]}"* We
then have to find the dominant saddle point by comparing the respective
free energies as for the n =2 model.

4.23. p>2and Q=P7-diag(p,, u,. 3—2u,) - P. By using the
relations (B5), (B8), and (B10) from Appendix B, we can evaluate the
Hessian (4.34) for the free energy (4.32). After a considerable amount of
algebra we obtain the Hessian

hy h, 0 0 0
hy hy 0 0 0

H={ 0 0 0 0 0 (4.45)
0 0 000
0 0 000

with the two eigenvalues of the 4,, 4, submatrix given by
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_plp—1)* (4J)

¢ 4 Caf > +2(3—-241,)" 7]
_pz(p—l)z (AJ)“[ 2(p2)<12Ml_§, Z,Z] M[;, ;,Z]Z)
16 = 5 M[4,3,2]1 “M[4,3, 2]
. 2p—2) 18M[2, 2> ]_ M[z’% Z]2>
+(3—2¢q,,)°" <5 M[z’z’z] M[zaz;z]z
P2 p—2 6M[2,2,z]_ M[3, 3,21 M[3, 3, 2]
2977 (3 —2q,y) <5 M[Z’ 171 2 M[zaz,l] >]
_P(P—l)(P—2)(AJ)2[ o3 M[3,3,2]
4 ML
203—29,,)7" 3—2’2’23}
+2( qi1) [2’2’ 1
§2=p(p_1) (AJ)Z -2 p2(p__1)2 (AJ) qz(p b 3 M[z, 2aZ]
4 it 4 10 M4, 2, 2]
p(p—D(p=2)(4J) M[3, 3, 2]
- 4 ‘]11 M[z,zazj (4.46)

The parameter z is given by Eq. (4.44). From the Hessian (4.45) and the
relation (3.45) we then find the following expansion for the free energy
(4.32) about the solution points g, =¢.,,#1, q2=¢;3=9,;=0 when
p>2:

a 3p(4J)? —1)(4J)?
= i PO e LD gt 4 (3 20,,)

erfi{ [3p(4J)*/410(3 —2¢,)" "' — ¢ '1}'*
{[3p(47)*/410(3 —2¢,1)" ' —qf "1}

h, h ) — 1M 4T)?
T RN )( 11>+u—)‘(|512|p+|513|p+|523|p)
Wy 1)\ 2

+0(8,,63,) + O(81,02,) + 0(83,) + 0(83,)
0%+ 0(6%2) + 0(3%2) (4.47)

—In

Here we have used Eq. (4.33) in determining the zeroth-order term, and
the eigenvalues ¢, and &, of the A,, h, matrix are given in Eq. (4.46).
Analogous expansions are obtained when ¢,, = g3; or when g,;, =¢;;.

We have plotted &, and &, for the two possible solutions y;, and u;,
obtained in Section 4.1 for several values of p > 2. In all cases we find that
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the Hessian is indefinite for u,, at all temperatures. For y; , however, it is
positive definite for all 47> 4J,,.

This means that the low-temperature solutions Q = P”-diag(u,,, 4y,
3—2pu,,)-P are unstable while the solutions Q=P7”-diag(u,,, uy,,
3—2u,,)-P are stable for all AJ>A4J,, ie, for all T<T,. Since
AT, <{10/[3p(p—1)1}"? both the high-temperature solution Q=
diag(1, 1, 1) and the solution Q = P” -diag(y,,, #y,, 3 —2u,,)- P are stable
for AJ, <4J < {10/[3p(p—1)]1}"? We then have to find the dominant
saddle point by comparing the respective free energies as for the case p =2.

424. p>2 and §,,=G9,,=Gq33=1, G,,=q13=G,3=¢,. The
Hessian matrix (4.34) for the free energy (4.32) can in this case be
evaluated by using the relations (C13), (C19), and (C28) from Appendix C.
After a considerable amount of algebra one finds the Hessian

a a2 ¢ 0 —c
a2 a ¢ —c 0
H= c ¢c b d d (4.48)
0 —~c d b d
—c 0 d b
with
=P(P—1)(AJ)2_P2(P—1)Z(AJ)TZM[z,zax] M[3, 3 ]]
2 20 M[2,2,x:| M[Z,z,x]
b_p(p—l)z(AJ)z b2
=49,
2
+p2(p_'1)2(AJ)4 2(p— 2)|: (M[2> Z,X] M[;agax]>2
4 7o MLL 3 x1 MLL, 2, x]
[27 X ] [29 2 ]
<M[25 2’x]+2M[2a zsx:‘)]
_p(p——l)(p—2)(AJ) p— [M[z’zax] M[z’z,x]:}
2 9o M[zazsx] M[zazsx]
=

_Pz(p_l)z(AJ) I:M[z’ 1, x] M[zazs ]:l p—2
20 M[3,3,x] MI[3,2,x1]7°

d:pz(p-'l)2(d'])4q2(p Z)I: <M[2> 2:x] M[z, 2,)(])
4 ’ M[zaz:x] M[zaz’ ]

(M[25 29 x] M[25 2,x]>]
M[z: 2,x] M[2’ 3 x]

(4.49)
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and where we have defined

9p(A4J)?
w= 2AT) e (4.50)
4
The eigenvalues of this matrix can be found by following a de Almeida
and Thouless procedure—see the appendix in ref. 8. We find

& =b+2d
£y s=1{3a+2b—2d+ [(3a—2b+ 2d)* + 48c*]"2)
Eus=1{a+2b—2d+ [(a—2b+2d)* + 16¢2]"2) (4.51)

where a, b, ¢, and d have been defined in Eq. (4.49).

A numerical plot of the eigenvalue ¢, for the solutions g,,, 9,,, 4.,
and ¢q,, obtained in the previous section shows that this eigenvalue is
always negative. We have confirmed this for several values of p.

Thus, the Hessian cannot be positive definite or positive semidefinite
and the free energy becomes unstable. There are no stable nondiagonal
solutions when p > 2.

4.3. Summary

The free energy per spin for the n =3 model was derived in Eq. (4.33)
in the thermodynamic limit N — oo by the method of steepest descent from
Eq. (2.6). It will only hold for stable solutions of the order parameter equa-
tions. As for the n =2 model, if we find more than one stable solution at
a certain temperature 7, the solution which yields the lowest free energy
(4.33) will constitute the true equilibrium configuration.

For all p we found that between the temperatures T, and T,
corresponding to 4J,= {10/[3p(p—1)]}', both the high-temperature
solution Q =diag(1,1,1) and the “antisymmetric” diagonal solution
Q=P7 . diag(u,,, py,, 3—2p,,) - P are stable. A numerical comparison of
the free energy (4.33) for these two solutions for various p shows that in all
cases we find exactly one A4J,_ with 4J, <AJ < A4J . For AJ<A4J,, ie., for
T'>T,., the high-temperature free energy remains the lower free energy,
whereas for AJ > 4J_, ie., for T< T,, the “antisymmetric” free energy has
a lower value.

We further find that the singular 7=0 solutions from Eq. (4.31) all
yield a higher free energy (4.33) than the 7 — 0 limit of the “antisymmetric”
configuration

PT' diag(:ulaa By, 3— 2”‘1,,) -P= Pleag(()’ 0; 3) -P
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Combined with the results from the previous sections, this then allows
us to describe the various cases for the n =23 model as follows.

4.3.1. Case p=2. The model can be described by one order
parameter y,, and we have one phase transition at 4J,~ 1.23037. There is
no simple analytic expression for 4J..

For 4J>AJ_, ie, T<T,., the order parameter u, is the solution
0<p,,<0.75 of Eq. (4.26). For 4J<A4J,, ie, T>T,, p, is identically
equal to 1.

The order parameter matrix Q is given by Q=07 diag(u,, u,,
3—2u,)-O with O an arbitrary orthonormal matrix. The free energy per
spin is given in general by Eq. {4.33), or in particular by the zeroth-order
term of Eq. (4.40).

Thus, for T>T7, we have the high-temperature solution Q=
diag(1, 1, 1).

At T'=T,. we have a phase transition. It is a first-order phase tran-
sition since —0a/0T has a discontinuity at T'= T,. Furthermore, the spin
configuration (g,5) has a jump discontinuity at 7. This is in contrast to
the » =2 model, where the spin configuration is continuous at T,.

For T<T,, we obtain a degenerate low-temperature continuum of
states 0 =07 -diag(u,,, py,, 3 —2p4,,) - O. The degeneracy results from the
invariance of the annealed partition function (2.3) under orthonormal
transformations (three-dimensional rotations) of the spin vectors S; when
p=2.

4.3.2. Case p>2. The models can be described by one order
parameter u,, and we have one phase transition at AJ,. There is no
simple analytic expression for A4J,. However, we know that A4J, <
{10/[3p(p— 1)1}~

For 4J>4J,, ie., T<T,, the order parameter p, is the solution
O<p,,<1—4 (for some 4) of Eq. (4.26). For AJ<A4J,, ie, T>T,, u,is
identically equal to 1.

The order parameter matrix is given by Q= PT.diag(u,, u,,
3—2u,)- P, where P represents an arbitrary permutation of the diagonal
elements of diag(---). The free energy per spin is given by Eq. (4.33).

Thus, as for p=2, we have the high-temperature solution Q=
diag(1, 1, 1) when T'>T..

At T=T, we have a phase transition. As for p=2, it is a first-order
phase transition with the spin configuration (q,,) displaying a jump
discontinuity at T',. This is in contrast to the n =2 model, where the spin
configuration is continuous at T, for p=3 and p=4.

For T<T, we obtain the diagonal solution Q=
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PT.diag(uy,, py,, 3—2u,,) - P with two identical diagonal elements. The
symmetry in the vector components S}, SZ, and S? in the annealed parti-
tion function (2.3) is responsible for the permutation degeneracy.

Since AJ, < {10/[3p(p—1)]1}'? we find 4J,-0, ie, T, as
p—co. From Eq. (4.26) we further see that for finite 4J and p — o the
only possible configurations are Q = P -diag(0, 0, 3) - P. This is also what
we expect physically as the ordering element of interactions becomes
‘dominant when p — 0.

5. MODEL FOR GENERAL n

In the previous two sections we found that for the n=2 and n=3
model only diagonal solutions @ of the order parameter equations
(2.23)-(2.25) constitute stable solutions when p > 2. We found further that
we have only one phase transition. Finally, the low-temperature solution Q
has the same number of distinct eigenvalues and respective eigenvalue
degeneracy at T'=0 and at finite temperatures. It seems physically
reasonable to expect these general features from the corresponding models
for arbitrary n as well.

With the above four assumptions, we can then derive explicit forms of
the order parameter equations (2.23)-(2.25) for general n.

5.1. The High-Temperature Solution

From our normalization condition for n-vectors and Eq. (2.5) we have

Y g,=n (5.1)

y=1
and
4,20 (52)

If we look for a solution Q of the order parameter equations (2.23)—(2.25)
which has only one distinct eigenvalue, then the order parameter equation
(2.24) already requires that

0=1 (5.3)

By using the formula (A9) from Appendix A, it is easy to see that the order
parameter equations (2.23) will be satisfied in this case as well.

Thus, Q =1 represents a legitimate solution of Eqgs. (2.23)-(2.25). For
p>2, we can identify it as the high-temperature solution by the fact that
the order parameter equations (2.23) yield g, = --- =pu,=1as T'—> o and
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by our initial assumption that all stable solutions @ must be diagonal when
p>2. For p=2, we have shown at the end of Section 2 that it suffices to
find diagonal solutions Q,. The most general solution Q is then obtained
from Eq. (2.28). Since, as for p > 2, the order parameter equations (2.23)
yield p,=---=pu,=1 as T—> oo, Q=1 must also represent the high-
temperature solution for p =2.

The free energy per spin in this case is obtained from Egs. (2.7), (2.8),
and (2.12) as

a ) 1
— = lim (_NIH<ZN>>
= -—G*

(p—1)(4J)?
—— 1
4 u% 1220 " Jnsu=ﬁ

n(4J)? 22— 12
ST T4 "I

2
exp |:p(ATJ) STQ(p— 1)5:' 4s

(5.4)

where we have used Eq. (B5) in the evaluation of the integral in the last
step.

5.2. The Low-Temperature Solution

Because of Egs. (5.1) and (5.2), the expression 7 _ | g%, will assume its
maximum value if one ¢,, equals # and all other ¢, equal 0. From Eq. (2.4)
for the annealed partition function we see that at T=0, i.e., as 4J — o, the
system will be in the ground state determined by the maximum value of

wp=19%g- Since we have assumed that Q is diagonal when p > 2 and since
we showed at the end of Section 2 that it suffices to find a diagonal solu-
tion Q, for p=2, 37 ;_, q%, will then assume its maximum value for

0,=diag(0,..,0,n) at T=0 (5.5)

The most general matrix Q is obtained by permuting the diagonal elements
of the standard form @, when p>2 and by an arbitrary orthonormal
similarity transformation when p = 2; see Eq. (2.28).

Because we have further assumed that the number of distinct eigen-
values and their degeneracy is conserved at finite temperatures, we thus
have the result that at low temperatures the order parameter matrix Q has
two distinct eigenvalues, one with degeneracy n — 1 and one nondegenerate.

822/68/5-6-19
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This means that the most general low-temperature order parameter matrix
Q must be of the form

Q=P7 diag[ppr py,n—(n—=p,1-P,  p>2
Q=07 diag[p,, p1,n—(n—=1),]1-0, p=2

where the similarity transformation with P represents an arbitrary per-
mutation of the diagonal elements of diag[---] and where O is an
arbitrary orthonormal matrix.

Since we require two distinct eigenvalues, this equation tells us that
u, # 1. Therefore, we can satisfy the order parameter equation (2.24) by
choosing

(5.6)

ag=py—apf ! (5.7)

_ (=)
= (=D =

The integrals in the order parameter equations (2.23), on the other
hand, can be evaluated by using the formula (A9) from Appendix A. With
dy=u?~"' having (n—1)-fold degeneracy and A,=[n—(n—1)p,17 "
being nondegenerate, we find

(5.8)

a,

_M[%, n2+1,z]

MM a2 2] 59)
and
M[3,n/2+1,2z]
—(n—HYyyyy=—"—"— 5.10
n—(n—1)y, M[%,n/2, Z] ( )
Here, we have used the identity
M{a b, z]=e’M[b—a, b, —z] (5.11)

from ref. 9, Eq. (13.1.27), in Eq. (5.10), and we have defined the quantity

A 2
ZEM{[n—(n—l)m]”‘l—uf*‘} (512

Equations (5.9) and (5.10) are not independent. By using the identity
(1+a—b)M[a,b,z]—aM[a+1,b,z]= —(b—1)M[a,b—1,z] (5.13)
from ref. 9, Eq. (13.4.3), we find

-1y +[p—m—-1)pu,]=n (5.14)

as expected from our normalization condition for n-vectors.
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Thus, Eq. (5.9) is the only order parameter equation which has to be
solved in order to find the low-temperature solution (5.6) for the general »n
model. This can easily be done numerically.

The free energy per spin for the low-temperature solution is obtained
from Eqgs. (2.7), (2.8), and (2.12) as

2~ lim (—%1n<ZN>>

kT ~Now
:—G*

(p—1)(47) , [P(AJ)Z Q- ]
E— IR —In exp | ———S87Q" S | dS
Zl 5! L Sl =/n d 4 ¢

— 1)(4J)?
:<P__Z>(_>{(n_1)ﬂf+[n—(n—1)m”}
2202 pp(ad)? L n
e s M "lnM[E’E’Z] >

where z has been defined in Eq. (5.12) and where we have used Eq. (B5)
in the evaluation of the integral in the last step.

In order to prove the stationarity of the free energies (5.4) and (5.15)
with respect to fluctuations of the order parameters g¢,; about their
respective equilibrium configurations, one would have to follow the same
procedure as for the n=2 and n=3 models. The phase transition points
AJ, are determined by equating the two free energies (5.4) and (5.15).

APPENDIX A

In this Appendix we evaluate the following two types of integrals:

i n 2 12
tm=ge | et 1 (1-25%5) @ (A1)
c+im 2 ~1 n 2 12
fum=gn | et (12500 ) T (1-2900)
y (A2)

for the special cases n=2 and n=3.

Case n=2. From the integral representation of the gamma function

fw e~ 6% X"\ dx = [(t)(h—a)~* (A3)
0
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and the convolution theorem for Laplace transforms we get

o fe o}
f o dxf e =0 — )1 =1 b1 gy
0 0

=I(t) I(1)(A—a) " (A=Db)"" (A4)
Using an integral representation of Kummer’s confluent hypergeometric

function [see e.g., ref. 9, Eq. (13.2.1)]

I(B) J‘lezttafl(l_[)ﬂ’“‘ldt (A5)

M@ b 9= 1) 1) do

one can easily show that

fx ea(x—t)(x_ t)‘l'l*l eb111271 d[
0

=e™B(t;, 1)x" TP M(15, T, + 15, (b—a)x) (A6)

Here, B(t,, t,) is the beta function defined as

I'(t)) I'(1,)
B =— U2
(0= (A7)
and Kummer’s function is defined as
«z afax+l)z?
M =14-— —4 ..
(o, B, 2) +ﬁ1!+ﬁ(ﬁ+1)2!+ (A8)

By inserting Eq. (A6) into Eq. (A4) and using Laplace’s inversion formula,
we finally find
1 c+ioco B B i
—[ U@ -b) e d

27Ti c—ico

eaxxn +12—1

—mM(tz,rl+rz,(b—a)x) (A9)

Applying this formula to Eq. (A1) when n =2 then gives
. 1 c+ioo p(AJ)Z —1/2 p(AJ)Z —-1/2
8(/2) EEn_i-[ exp[24] (A =Tk A— Ay di

c—iw 4
AJ)? 1 AJ)?
=exp[2p(4) @M(E, 1,2’%(@-10)
4J)? AJ)?
—exp | 2 (v ) | 1o (MG 0= (A10)
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where in the last step we have used the identity
M(3, 1, 2z) = e°I(2) (Al1)

[see, e.g., ref. 10, Eq. (7.11.2.10)] and where we have denoted modified
Bessel functions of order n by I,,.
Applying formula (A9) to Eq. (A2), on the other hand, gives

A 1 re+io AJ)? —3/2 AJ)? —1/2
fl(ﬁ)E%L; exp[24] (z—”(4) 11> (z—p(4) )Q) di

100

—2exp [2”(‘”)2 /11] M(l YA Gl (/12—,11)>

4 2’ 4
~2exp [i’(‘l—”z (A + 12)}[10 (”(f)z (3o — m)
J 2
1, (2 -0 | (A12)

where in the last step we have used the identity
M(3,2,22) = e*[1o(z) — 1,(2)] (A13)

(see, e.g., ref. 10, Eq. (7.11.2.12)].
In the same fashion one finds

fu/m =200 [ 252 1 [ 1 (P22 1 )
AJ)?
+1, <p(4) (/12—;“1))} | (A14)

Case n=3. From Eqgs. (A9) and (A11) we find the Laplace inver-
sion formula

1 c+ioo V AJZ —1/2 AT 2 —1/2
| explax] <,{—p (4]) /IB) <z—’Ll Ay> di
Tilve—joo

4 4

—exp [”(‘;") (A +xy)x] Iy <’—’%J)— (Aﬁ—zy)x) (A15)

From ref. 11, Eq. (2.3.5), we further have

1 c+ioo A 2 —k—1/2
2—7”[  exp[ix] (z—p( 4J) /1a> di

2% ATY?
=25 exp ["( ) ;wa Xk (A16)

NZZv 3l 4
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By using the convolution theorem for Laplace transforms, we can combine
Eqgs. (A15) and (A16) to get

. 1 re+ioo AD)? —~3/2
D= et (z—p‘ pd Aa)

p(AJ)Z —1/2 p(AJ)2 —-1/2
x(z-——i—@ (z— )

2 f: exp |:P(AJ)2 2.3 —r)] (3—1)

- ;

X eXp I:p(zng)Z (Ag+ ly)r] I, (p(AgJ)2 1:> dt

=6cmj1 exp[ —a,u](1 — u)"? Iy(b,u) du (A17)
)

where we have made the substitution 7= 3u in the last step and where we
have defined the quantities

auz3p(§J) (24— Ap—1,) (A18)
3p(4J)?

b= ”(8 S 4y=1,) (A19)

C = <3> 1/2 exp [M }ta] (A20)
7 4

g”(\ﬁ ) is evaluated by following the same procedure as for fa(\/g ). We find

1 e AR\
dD = i3] (z )

AJ 2 —1/2 A 2 —1/2
><<1—1’(4) AB> (A~"’———~( 4J) 1y> di
1
=caf exp[ —a,u](1 —u)~ " I,(b,u) du (A21)
0

where a,, b,, and c, have been defined in Eqgs. (A18)-(A20). We note that
the last integral in Eq. (A21) is only apparently dependent on a.



Annealed n-Vector p-Spin Model 965

In the case that two of the eigenvalues 4,, 4,, and A, are equal, the
integrals in Eqs. (A17) and (A21) can be evaluated even further.
_ Let us assume that 4,=4,%# 4,. By using Eq. (A9) and the definition
of f,, we then find

A _ 1 c+i p(AJ)2 —2 p(AJ)Z ) —1/2
f“(ﬁ):ﬁjc  exp[34] <,1—Txa> (/1————4—AY> di

— oo

15 3p(aJy
|35 25 )

—e, S [1 +222 (g) " etfi(/7) ez] (A22)

where erfi(z) denotes the error function of an imaginary argument

erfi(z) = —— [ " exp[12] dt (A23)
0

N

and where we have defined the quantity

3p(4J)?
4

(A, —1,) (A24)

In the last step of Eq. (A22) we have used the identity
15 37142 172
M [5, > z} = [ z z (g) erfi(y/z) — ez] (A25)

[see, e.g., ref. 10, Eq. (7.11.2.13)]. )
In the same fashion we evaluate f, and g,

" _ 1 c+ioco p(AJ)2 —1 p(AJ)z —32
fy(\/§)=%jmw exp[34] (A—T,L,) (z——z——zy> di

35 3p(a7y’
2’2 4

=4caM|: (,L,—/ld)}

6 1 /m\"?
=cm;{e —5(2> erﬁ(\/'z')] (A26)
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§/=m | exp[31] (z —p—(‘f)z za>l <z—”————(AJ)2 zy>~m di

2nide oo 4
1 3 3p(4J)?
_2caM|:2, > 2 (A, — 44)

—c, (E>1/2 erfi(/2) (A27)

z

where z has been defined in Eq. (A24) and where we have used the

identities
3 5 3 1 B 1/2
w357 )=5 e (5) envi] A
13 1 (m\"?
|z3e)=3(5) e "

from ref. 10, Egs. (7.11.2.29) and (7.11.2.11).

APPENDIX B

In this Appendix we evaluate the following three types of integrals:

(49) rrip—1
g(\/ﬁ)zjus”=ﬁexp ["—z‘—)s 0" )s] ds (B1)

Ful/m =]

ISl =7

oo/ 1) = Jnsn =/n

for the diagonal order parameter matrix

A 2
5*SP exp [‘i(—ZJl STQ(- “s] ds (B2)

ATY?
S*SPSS? exp [1¥ STQ - “s] ds  (B3)

Q¥ V=diag(d,,, A1, Agper A2) (B4)
k n—k
Case 1:
p(4J)? _
g(/n)= X |:——-—ST r 1)S:|ds
\/_ fnsu=\/; P 4 €
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By Laplace-inverting Eq. (2.21) and using the formula (A9) derived in
Appendix A, we find

st/m=x-m |5

where we have defined the quantities

, } (BS)

[N

2 =12 np(AJ)?
X=——— 1 B
I(n2) ( ) (B¢)
and
np(AJ)?
A (B7)
Case 2:

~ AJ 2
faﬁ(\/;;) EJ”S” iy S5=S” exp [p_(4_)_ STQ“’”S:| ds

By Laplace-inverting Eq. (2.20) and using the formula (A9), we get
—k

M[n—z—,g+l,z], a<k

Fuply/m) =0, X . (BS)

M[—2—+1 2+1,z], a>k

where J,, denotes the Kronecker -symbol and where X and z have been
defined in Eqgs. (B6) and (B7).

Case 3:

haﬁy&(\/;) Ef

IS =/»

As before, in order to avoid the \/Z constraint in the above integra-
tion, we form the Laplace transform

5 AT)?
RNAGAYAYS exp [E(_‘t_) STQ(p—l)S:I das

ac (5 )
f exp[ —Ax] 2 77 ZapyolN M) \/—
0 f

= j aﬂyé(r

» " AJ)*
=[ susrsrs? exp[— Y <,1—p(4) /17) (Sf)zJ ds* ...ds"
—® =1
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4 4

a=B=v=0, a<k
a=f=y=6, a>k

n;/“ (l—p(iJVM)_(k/zH) (l—p(AT‘miz>¥(nk)/2,
a=f#y=9, ay<k

n;/“ (i—p(ij)z ll>_(k/2+“ <A—p(ij)2 ),2>_((nk)/2+ n
a=f#y=9, a<k<y

#(A—p(i:)—z Al)—k/z (,1——11%{)—2/12>“((n_k)/2+2),
a=B#y=0, a,y>k

0, otherwise

32 AT)? — (k/2+ 2) 2 —(n— k)2
< (1 )z,> = )

(B9)

)

The conditions in Eq. (B9) are hereby understood as modulo permutations
of a, B, y, and 4. By Laplace-inverting Eq. (B9) and using the formula (A9),

we get

haﬁyé(\/’_/[)

n—k n
3MI: 2 52+ 32]3 o 5 y 3
n—k n
3M|: 3 +2,§+2,z], a=pf=y=9,
n—k n
— nX Ml: P ’§+29Z:|: 0‘:}3?&?:5,
T n+2
M[";k+1,—'21-+2,z], a=p#y=9,
n—k n
Ml: 2 +2,5+2,z:|, a=B#y=20,

0, otherwise

a<k

a>k

o, y<k
(B10)

a<k<y

a, >k
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where X and z have been defined in Eqgs. (B6) and (B7), respectively. The

conditions in Eq. (B10) are again understood as modulo permutations of
o, f, v, and 4.

APPENDIX C

In this Appendix we evaluate the following three types of integrals:

= PAIY ror—) ]

=] ew|"s0u s s (€1
4J)?

fup/n) = jusn o 5S” exp [5’—(4—) STQ“’”S:l ds (C2)

2
houpys(/n) = j S*SPS7S? exp [M S7Qtr- ”s] as  (C3)
ISh=/n 4

for the special symmetric order parameter matrix Q

_ )44 a=p
‘M‘{qo «t (4
Case 1:
= PAIY o1 o1, }
g(\/;)_LSl:ﬁexp[ 7 S0 S |dS

In order to avoid the \/; constraint in the above integration, we can
form the Laplace transform

j:) exp[ — 2x] gz(—\\//_i)dx

= [ expl—1r] g(r) dr
(4]

0 A 2
=j exp [—ASTS +’i(TJ)— STQ""”S] ds
=f exp [—STAS]dS (C5)
where we have defined the matrix A4 as
2
T .
A= , (C6)
_p(AJ) qp—l OC-‘#/?

4 707
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A is a cyclic matrix. Thus, its eigenvalues v; are determined by the nth
roots of 1, w; {(i=1,.., n),

plag? st p(dd)?

l=,{————-— — A7) 4p—1 k
V, 4 qd kgl 4 qo wl
AJ)?
120 g g, w,#1
- 1)
AJ)?
2PAIY e g, =1

4

Since A is symmetric, we can find an orthonormal matrix O which
diagonalizes 4. Using the definitions

w222 s = 1)g21)
aJ)? ()
v=1 -2 g gy
we can demand
D=0TA40 =diag(v,, v3,-» V) (C9)
The orthonormal matrix O = (0,;) must then have the form
0,,=n
0,5=0, f>a+1, f>1 (C10)
0= —(n—B+ 1) (n—p+2)7"2  p=a+l, f>1
Ogp=(n—B+1)""?(n—p+2)" "7 B<a+l, B>1
By using the orthonormal coordinate transformation
S=07S (C11)

we can now evaluate Eq. (C5),

jw exp[ —STA4S] dS

n

=f°° exp[—vl(S*)Z— 3 vz(s“Z)z] dst'-..ds"
e Pt

:nn/zvl—l/zvz—(n—l)ﬂ (C12)
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Laplace inversion of Eq. (C5) and application of the formula (A9) derived
in Appendix A to Eq. (C12) finally yields

g(/n)= Y-M<”—;—1,g,z) (C13)

where we have defined the quantities

Znn/zn(n—l)/Z np(AJ)Z bt
=T 4 (n—-1)g? ! Cl14
vt e {2t -1z 1] (€
and
2 AJZ
o= TPAT) (C15)
4
Case 2:
4J)> ’
ful/m =] S*S# exp [Iu STQ- 1>s} ds
IS)=/= 4

We evaluate fa,;(\/;) for the symmetric matrix given by Eq. (C4) and
proceed analogously to the derivation of g(\/—ﬁ).

The ./n constraint can be avoided by first taking the Laplace
transform

[ Lexp( —;Lx)]f“zﬂ(% de=[" [exp(—ir)] foglr) dr

Jo

=J°O §5P exp[ ~S74S1dS  (C16)

— 0

where A4 is given by Eq. (C6).

The matrix 4 is then diagonalized by means of the orthonormat
coordinate transformation (C11).

For a=f we get

foo (8*)* exp[ -S"4S8] dS

— 0

oo n . 2 R R .
=j (Z ouﬁsﬂ> exp[ —87DS7] 4S
B=1

-
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=fw Z Oiﬂ(gﬁ)zem[—vl(ﬁ‘)z— Z vz(Sﬁ)z] dS'...ds

—®©pg_1 =2

n/2 n 715"/2
A2 —3/2, —{(n—1)/2 2 —1/2,, — 1)/2
=044 2 vy )/+Z Oup ) vy Py, V
=2
7.l:n/Z
— > [vf3/2v2—(n—l)/2+(n_l)vl—l/Zv;(nJrl)/Z] (C17)

where we have used Eq. (C10) in the last step.
For o # f§ we get

jw §%SP exp[ —STAS] dS

— o0

=7 5 ononSen [ —ui87 = B (8|St asr

—0 =] B=2
n"? 32, —(n—1)2 - s )2
= 0,105 VT T2 Y 0n0p =y P 0T
y=2
7.Cn/2
=% [y ¥2y; @ D2y 2y~ (e 112] (C18)
n

faﬁ(\/ﬁ) can now be determined by Laplace-inverting Eq. (C16) and
applying the formula (A9) derived in Appendix A to Egs. (C17) and (C18).

We obtain
—1 1
M n——,z+1,z —-M i,f—l—l,z , oa#p
Y 2 72 2 72
fugl /) ==
L VY L S T GV =
2 32 5Z 2 92 5Z b o=
(C19)

where the quantities ¥ and z have been defined in Eqgs. (C14) and (C15),
respectively.

Case 3:

hagrs(/P) =
M\/_ jnsua/?
Again, we evaluate ham(\/ﬁ) for the symmetric matrix given by
Eq. (C4) and proceed analogously to the derivation of g(ﬁ).
The \/; constraint is circumvented by first taking the Laplace
transform

A 2
REALAYA Y exp |:p(_4']_)- STQ(p— I)S:| 4s
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[ [exp(—Ax)] Pt/ X) [ texp(=2)T hypyslr) dr
0 X 0

W

- j T SeSPSIS? exp[—STAS]dS  (C20)

where A is given by Eq. (C6).
Let P, be the nxn permutation matrix which swaps the pth and tth
components of S,

st st
S° s
Pl o }=] (C21)
S s°
s" "

We can easily show that because of the special symmetry of the matrix A
[see Eq. (C6)] we have

Pl AP, =4 for all p, © (C22)
Thus, we can find coordinate transformations
gzpm. e Po-S (C23)

which permute the components of S in such a way that the 1a§t integral in
Eq. (C20) reduces to one of the following five canonical forms:

j S*SPS7S? exp[ —STAS] dS

— o0

[7 315735 exp[ 8748148, a#fry#s

— 0

|7 (31735 expl 8748148,  a=p#y#5

— 0

= [7 (3 (3 exp[ 8748145, a=p#y=0 (C24)
[© 35 expl 8748148,  a=p=y#0
[7 (8" expl 87481 48, a=f=y=0
\ W~

Here we have used Eq. (C23) and the fact that det(P,.)=1.
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Using the orthonormal coordinate transformation

S=078 (C25)

we can now evaluate Eq. (C24).
For a# B #v+#0 we get

jw $%5P57S° exp[ —STAS] dS

=j“° $152535% exp[ —§745] 4§

— 00

AL Z o) 2N )

X exp [—VI(S”)Z— i vz(S’ﬁ)z] d

B=2

w

© n .
=J‘ |: Z 011021030104&(Sa)4
—© La=1

+ ) (01a02zx03,804ﬂ+01103m02ﬂ04[3+01a04102ﬂ03ﬂ)(‘§m)2 (Sﬂ)z]
x=f

X exp [—v1(§1)2 — i v2(§”)2] das

g=2
J~OO

— 0

1 1 1 G2\4 6 G1y2 1 &2y2
[;(S )4—m(5 ) = (57)7(57)

3 5 5 4 " A A
Pt (ST (S [oxp | vi(SP - T 0892 ] a8

=2

nf2

T an?

(3v1—5/2v2f(n7 12 6v;3/2v;(n+ 1)/2 + 3V;1/2V;("+ 3)/2) (C26)

where we have used the explicit form of the matrix O from Eq. (C10) and
the symmetry of the integral in the second last step.

In a similar fashion one evaluates the remaining four cases of
Eq. (C24). We find
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| " 5258578’ exp[ —S7AS] dS

— 20

n/2

(3v'5/2 —(n— 1)/2+(n-6)vf3/2v;(”+1)/2

_(n_3)v;1/2v;(n+3)/2) dzﬁ#‘y#é

n/2

4 2

(3v75/2 —(n— 1)/2+2(n___3)v;3/2v;(n+1)/2

+(n2_2n+3)v;1/2v2—(n+3)/2) O(=ﬁ7é’))=5
~ (C27)
. = (3\’—5/2\)7("‘1)/2"]’3(”—2)Vr3/2V;(n+1)/2

—3(7’2-—1) -1/2 —(n+3)/2) a=ﬂ=?¢5

TC”/Z

4n?

(3v—5/2 —(n— 1)/2+6(n—1)vf3/2v;(”+1)/2

+3(n__1)2 —1/2 »(n+3)/2) fl=ﬁ=?=5

Now haﬁyé(ﬁ) can be determined by Laplace-inverting Eq. (C20) and
applying the formula (A9) derived in Appendix A to Egs. (C26) and (C27).
We obtain

H[3, —6,3, 2], aEBFEYH£S
H[3,n—6, —(n—3),z], a=BAy#£
haﬁya(ﬁ):—y—- H[3,2(n—3),n2—2n+3,z], oa=B#y=0
"2 ) i3 3m_2), —3(—1) 2], a=f=y£0
H[3,6(n—1),3(n—1)%z], a=f=y=94

(C28)

where the quantities Y and z have been defined in Eqs. (C14) and (C15)
and where we have introduced the function

n n+ln
,§+2,Z)+bM< 2 , =+ 2, z>

H[a, b, c,z]=aM (ﬁ;‘—

I\)

3
+eM (ﬁg—,gu, z> (C29)

822/68/5-6-20
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