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Annealed n-Vector p-Spin Model 
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A disordered n-vector model with p spin interactions is introduced and studied 
in mean field theory for the annealed case. We present complete solutions for 
the cases n = 2 and n = 3, and have obtained explicit order parameter equations 
for all the stable solutions for arbitrary n. For all n and p we find one stable 
high-temperature phase and one stable low-temperature phase. The phase 
transition is of first order. For n = 2, it is continuous in the order parameters for 
p ~< 4 and has a jump discontinuity in the order parameters if p > 4. For n = 3, 
it has a jump discontinuity in the order parameters for all p. 

KEY WORDS: Disordered spin systems; n-vector model; mean field theory. 

1. I N T R O D U C T I O N  

In 1968 Stanley ~ in t roduced  the n-vector  mode l  as a unifying descr ip t ion  
of many  s impler  n o n r a n d o m  models  in s tat is t ical  mechanics  such as the 
Ising mode l  ( n =  1), the V a k s - L a r k i n  p lane  r o t a t o r  mode l  ( n = 2 ) ,  the 
classical Heisenberg  mode l  (n = 3), and  the B e r l i n - K a c  spherical  model  
(n= o0). 

Stanley 's  exact  solut ions  have been confined to nearest  ne ighbor  one- 
d imens iona l  chains  and  hence do  not  exhibi t  a phase  t ransi t ion.  The  mean  
field theory  ob ta ined  by consider ing this mode l  with an infini te-range 
po ten t ia l  (and  hence a phase  t rans i t ion)  was s tudied by Silver et aL ~2) 

We have general ized the n-vector  mode l  by in t roduc ing  Gauss i an  ran-  
d o m  bonds  and  p spin in teract ions .  In  this paper  we shall  be consider ing 
the mean  field theory  for the annea led  case. The  quenched case is in tended  
for a fo l lowup publ ica t ion .  

F o r  r a n d o m  spin systems, even mean  field theory  has p roven  to be 
very subtle. The  first inf ini te-range Ising spin glass mode l  was p r o p o s e d  by 
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Sherrington and Kirkpatrick (SK). In 1980 Derrida (3) showed that the SK 
model could be generalized to models involving p spin interactions and 
that in the limit of p --, oc they simplified to a random energy model, which 
consists of a collection of independently distributed random energy levels. 
He was then able to solve this model without recourse to the n-replica 
trick. Gross and M~zard (4) confirmed his results for the same p ~ oo model 
by using the n-replica method and Parisi's replica-symmetry-breaking 
scheme. Gardner (s) and Stariolo ~6~ have studied the model for finite p. They 
find that for p = 2 and p = 0o there are two phases, a high-temperature 
phase above a critical temperature Tc and a spin-glass phase below Tc. The 
phase transition is of second order and continuous in the order parameter 
q(x) for p = 2 but has a jump discontinuity in the order parameter for 
p = oo. For  all p > 2 there are three phases, a high-temperature phase above 
a critical temperature Tc~, a spin-glass phase SG1 which is stable between 
Tel and a second critical temperature To2 < To.l, and a spin-glass phase SG2 
below To2. The phase transition at To, is of second order with no latent 
heat but displays a jump discontinuity in the order parameter. The phase 
transition at To2 is of second order and continuous in the order parameter. 
Although a stability analysis shows that the disordered high-temperature 
solution is stable at all temperatures, its entropy becomes negative at some 
temperature T ' <  Tc~. This suggests that replica symmetry is broken. By 
performing the first step in Parisi's replica-symmetry-breaking scheme one 
obtains the spin-glass phase SG1. The nature of the spin-glass phase SG2, 
however, is not completely understood, since the full replica-symmetry- 
breaking scheme would have to be performed in this case. 

Studying a solvable random spin model with p spin interactions must 
therefore be of some value. It turns out that already in the annealed case 
our n-vector model with p spin interactions displays a considerable richness 
of solutions and subtleties regarding their stability. These annealed 
solutions will further constitute the basis for the quenching of the model by 
means of the n-replica trick. 

The paper is organized as follows. In Section 2 we present our model 
and derive the order parameter equations by means of a saddle point 
method and a theorem from the theory of matrices. In Section 3 we present 
the complete solution for the n = 2 model and in Section 4 we present it for 
the n = 3 model. We find that out of all possible solutions for the order 
parameter matrix Q (defined in the next section), only the diagonal 
solutions with at most two distinct eigenvalues are stable. By extrapolating 
this result to the case of general n, we then derive in Section 5 explicit 
forms of the order parameter equations for all stable solutions. 
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2. M O D E L  A N D  O R D E R  P A R A M E T E R  E Q U A T I O N S  

The model  studied is defined by a generalized Hami l ton ian  

- - f l~-"  E Jil...ip ~ S? . . . . .  S ~' (2.1) q 

1 ~ < i 1 <  " ' "  <ip<.N a 1 

where Sz is an n-vector  spin S ~ - ( S ] ,  $2,..., $7), normal ized to IISill =,fn, 
The coupling constants  Ju. .-~ are independent  r a n d o m  variables with an 
appropr ia te ly  scaled Gauss ian  distr ibution so as to give rise to an intensive 
free energy per spin 

F Np-1 ~,/2 (Si ' ip)ZNP- '~ AJ=-flAJ (2.2) P(Ju,;)-i~pi~j)2 j e x p [ - -  p! (Aj )  2 j ,  

AJ represents the width of the Gauss ian  distribution, which for simplicity 
is assumed to be centered at Jo = 0 .  The case of a nonzero  mean  can be 
treated in a canonical  fashion. 

For  n = 1 our  model  represents the r a n d o m  Cur ie-Weiss  model  with 
p spin interactions. Fo r  n = 2 we obta in  the r a n d o m  planar  ro ta to r  model  
with p spin interactions.  Fo r  n = 3 we have the r a n d o m  classical Heisenberg 
model  with p spin interactions. The case p = 2 is the r andom Stanley model.  
All of these models  have wel l -known submodels,  such as the Sher r ing ton-  
Ki rkpa t r ick  model  for n = 1 and p = 2 and the r a n d o m  energy model  for 
n = 1 and p --+ ~ .  However ,  we do not  recover the r a n d o m  spherical model  
for p = 2 and n --* ~ ,  since this would require n = N and hence a different 
limiting procedure  and scaling. 

F r o m  Eqs. (2.1) and (2.2) we form the annealed par t i t ion function 

f 
~ 

<ZN> = H P(Ji l  . . .6) dJq. . .  6 
- o o  1 ~ < i 1 <  . . .  <ip<~N 

~ = 1  l<~il<...<ip~<N 

Evaluat ing the Gauss ian  integral gives 

Fp_! 2 (ZN> = Tr{s , )exp  L 4NP-1 

[e !  (  s)2 
= Tr{s~} exp L 4NP- 1 

= Tr{s,~ exp [4NP 1 I Np 

(2.3) 

Z . . . . .  s 
l ~ < i l <  . . -  <ip<~N = 1  

Y, E . . . . .  s ;  s 
c q f l = l  l <~il< ... <ip<~N 

E q~/~+O(N p 1) (2.4) 
~ , 3 = 1  

822/68/'5-6-17 
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where we have defined 

1 
u 

$7S ~= O(1) as N ~  oo (2.5) 
q ~ fl =" ~ [  i = l 

We evaluate the trace in Eq. (2.4) by introducing a Lagrange multiplier 
matrix 2~p. In the limit of large N, (ZN> becomes 

ll f /2.6/ 
where 

(~J)~ 1 
G(q~p, 2~)-  4 Zq~P~- ~ , ~ 2 ~ q ~ + l n T r { s  )exp 2 ~=1 

(2.7) 

Equation (2.6) can then be evaluated by the method of steepest descent 

<ZN) N~oo), exp[NG*] -C (2.8) 

where C is a constant independent of N and where G* is the dominant 
saddle point of G. 

From now on, Q denotes the n x n matrix with elements q~  and Q(k) 
denotes the n x n matrix with elements q~.k Similarly, A (A (k)) denotes the 
n x n matrix with elements 2~ k (2~). The matrices A and Q are defined by 
the saddle point equations 

OG 3G 
- 0 ,  - - = 0  (2.9) 

Evaluating these equations yields 

2~ = P(Aj)22 q~P~- 1 (2.10) 

q~ ~,sll=,/~ S~S~ exp[�89 SrAS] dS (2.11) 
= '  ~ltsll=,/;exp[�89 dS 

where S T is the transposed vector S. By using Eq. (2.10), one can show that 
for odd p only solutions with q~ >~ 0 can constitute saddle points of G. This 
is a manifestation of the fact that for odd p and in the limit of large N only 
states with q~ ~> 0 will contribute to the trace in Eq. (2.4). Thus, we have 
the condition 

q~>~0 if p = o d d  (2.12) 



Annealed n-Vector p-Spin Model 929 

imposed by our model on the order parameters q~. Inserting Eq. (2.10) 
into Eq. (2.11) finally gives the following equation for the order parameter 
matrix Q: 

Q=~,Sfllsll/~SS r exp[�88 (p 1'S] dS (2.13) 
= ,/~ exp [ �88 p( AJ) 2 S T Q (p- 1)S] dS 

We are now going to formally evaluate this order parameter equation. 
Because of Eq. (2.5), the order parameter matrix Q must be symmetric. 
Thus, there exists an orthonormal coordinate transformation 

S = O S  (2.14) 

which diagonalizes Q(P- 1), 

OrQ (p 1)O=diag(2~ ..... 2,) (2.15) 

Here we have denoted by 21 ..... 2, the eigenvalues of Q(p-l) and by O a 
suitable orthonormal matrix. 

Any orthonormal coordinate transformation will map the n-sphere 

~ =  {s I IlSll =,fn} (2.16) 

onto itself. If we make the coordinate transformation (2.14) in Eq. (2.13), 
we therefore get 

oTQo=L~,~,,,~,/~__, ag~ expe�88 ~ ~=~ ~,(~)q d~ 
=,/; exp[~p(AJ) 2 ~,~=~ 2~(S~) 2] dS (2.17) 

where we have also used the fact that OrO = 1. 
Let us now define the functions 

7=1 

,2.19, 
7 = 1  

to avoid the x/-s constraint in these integrals, we form the Laplace In order 
transform 

oo -,~x] AA/-~) dx 

# = e x p [ - ~ r  2] f~e(r) dr 
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= rc'/22 2 P(Aj)24 2~ 2 4 2, 6~  (2.20) 
y=l 

where 6~  represents the Kronecker 6-symbol. In the same fashion we 
evaluate the corresponding Laplace transform for g and find 

g(~/'X) dx=n~/2h(  ) ~ 2 x / x  P(dJ)24 )--1/2 f0 e x p [ - 2 x ]  2~ (2.21) 
y=l  

By inverting the Laplace transforms given by Eqs. (2.20) and (2.21) and 
using our definitions of f~e(x/-n ) and g(~fn), we can then write the order 
parameter equation (2.17) in the following form: 

0 QO={~nif~_~o~ exp[2n] 4 

X J. P(A)J22~, d2"(~fl 
?=1 4 

. i~ exp[an]  1~ 2 P(Aj)22,) d2J (2.22) 
y=l  4 

Since the right-hand side of this equation is a diagonal matrix, we find 
that the similarity transformation with O not only diagonalizes Q{p ~), as 
defined, but also Q. What is more, since our choice of O was arbitrary 
as long as Eq. (2.15) was satisfied, we actually find that every ortho- 
normal similarity transformation which diagonalizes Q{p ~ must also 
diagonalize Q. 

A theorem in matrix theory states that for arbitrary matrices A and B, 
if B commutes with every matrix which commutes with A, then B is a poly- 
nomial in A. {7) By a slight modification of the proof, one can show that if 
we have two symmetric matrices A and B, and if every orthonormal 
similarity transformation which diagonalizes A also diagonalizes B, then B 
is a polynomial in A. This means that Q must be a polynomial in Q~p 1~ 
Furthermore, since Q{p- ~ is symmetric, it is a simple matrix, and therefore 
the degree of its minimum polynomial is equal to the number r of distinct 
eigenvalues of Q{p 1( Thus, Q must be a polynomial in Q{p-l~ of 
maximum degree r -  1. 

If we now denote by #~ ..... /t, the eigenvalues of Q and as before by 
21 ..... 2, the eigenvalues of Q{p ~), then Eq. (2.22) and the above remarks 
lead us to the final form of the order parameter equations: 
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#~= 

and 

2~i c i~ exp[2n]  4 ~=l 4 

1 c+i~ exp[)m] 2 27 ~ = 1 ..... n 
x 2 ~ x  i ioo ~=1 4 ' 

(2.23) 

Q = a o I + a l Q ~ P - l l +  . . .  + a t  IEQ(P- I ) ]  r I (2.24) 

where r is the number of distinct eigenvalues of Q(P !), I represents the 
unit matrix, and the ai are some real numbers. We further have the 
constraint 

q ~ > 0  if p = o d d  (2.25) 

imposed by our model on the order parameters q~.  
The challenge now is to find a matrix solution Q of Eqs. (2.12) and 

(2.13) or equivalently of Eqs. (2.23~(2.25). 
The case n = 1 is trivial. Equation (2.5) combined with the normaliza- 

tion condition HS]I = x/n already dictates that the (one-dimensional) matrix 
Q simply equals 1 in this case. By inserting this into Eq. (2.7) and finally 
into Eq. (2.8), we get 

(ZN~ N~) expI(~J_~+ln2) N ]  (2.26) 

This result, which was obtained by the saddle point method above, is in 
perfect agreement with the result we get by evaluating the trace in Eq. (2.4) 
directly (which is possible for n = 1 ). 

All cases n > 1 are nontrivial. We are going to present the complete 
solution for the n = 2  case in the next section and for the n = 3  case 
in Section 4. For  general n, we shall derive explicit forms of the order 
parameter equations for all stable solutions in Section 5. 

One final remark about the case p = 2. The case p = 2 is special since 
the order parameter equation (2.24) can always be satisfied by choosing 
al - 1, and a i -  0 if i r 1. Furthermore, we have ~t~ = 27, which means that 
we only have to find a set of eigenvalues kt~ satisfying Eq. (2.23). All order 
parameter matrices Q that have this same set of eigenvalues, i.e., all 
matrices which are generated from a diagonal matrix consisting of these 
eigenvalues by an orthonormal similarity transformation, will then be a 
legitimate solution. 
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The only task for p = 2, therefore, consists of finding a diagonal matrix 

Qd = diag(#l ,...,/~n) (2.27) 

which solves the order parameter equation (2.23). The most general solu- 
tion of the order parameter equations (2.23) and (2.24) is then given by 

Q = O~QdO (2.28) 

where O is an arbitrary orthonormal matrix. This corresponds to the 
invariance of the annealed partition function (2.3) under orthonormal 
transformations of the spin vectors Si when p = 2. 

3. n - - 2  M O D E L  

3.1. So lu t ions  

The order parameter matrix Q in this case is two dimensional, 
consisting of the order parameters q11, q12, q21, and q22- 

However, these order parameters are not independent. Our normaliza- 
tion condition for n-vectors requires that 

( 3 1 )  2 -[- ( 3 2 )  2 = 2 (3 .1)  

This equation imposes constraints on the vector components S 1 and S 2, 

0 ~< (S~) 2 ~< 2 (3.2) 

-1<~$132<~ 1 (3.3) 

Because of Eq. (2.5), these constraints on the vector components then 
translate into the following constraints for the order parameters: 

q22 ~ -  2 - qll (3.4) 

q21 = q12 (3.5) 

0 ~< qll ~< 2 (3.6) 

- 1 ~< q12 ~< 1 if p = even (3.7) 

0~<q12~< 1 if p = o d d  (3.8) 

where we have incorporated the constraint imposed by Eq. (2.25) into the 
last equation. 
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The most general order parameter matrix Q which solves the order 
parameter equations (2.23)-(2.25) must therefore be of the form 

and has the eigenvalues 

Q = ( q l l  q,2 ) (3.9) 
kq12 (2 -q11)  

#1,2 = 1_+ [ ( q l l -  1)2+q~2] 1/2 (3.10) 

The corresponding matrix Q(P 1) has the eigenvalues 

_ _  l [ . q p - - I  i A,q2(p-- 1) ) 1/2) 1 . 2 - ~ 1 1  + ( 2 - q 1 1 )  p-  + - { [ q P ~ ' - ( 2 - q 1 1 )  p 112+~u12 

(3.11) 

We are now going to determine the order parameter equations. 
The right hand sides of the order parameter equations (2.23) for n = 2 

are evaluated in Appendix A. By inserting the expressions (A10), (A12), 
and (A14) into Eq. (2.23) we get 

I'(�88 (22 - 21)) (3.12) 
#, = 1 Io(�88 (22_21))  

Ii(�88 2 (22 - 21)) (3.13) 
# 2  = 1 

(22 

We see that #1 + #2 = 2, as expected from Eq. (3.4) and the invariance of 
the trace of a matrix under orthonormal similarity transformations. This 
means that Eqs. (3.12) and (3.13) are not independent. If we can satisfy Eq. 
(3.12) for some qll and q12, then Eq. (3.13) will be satisfied automatically. 

The order parameter equation (2.24) on the other hand tells us that 
for n = 2 we have 

Q = aoI (21 = 22) (3.14) 

Q = a o I + a l Q  (p-1) (21~22) (3.15) 

Inserting the expressions (3.10) and (3.11) for the eigenvalues into 
Eq. (3.12) gives 

[(qll  - 1)2 + q~2] 1/2 

11 {lp(Aj)2 [(qp~l  _ (2 - q11) p 1)2 a- Art2(P - - -  ~ /  12 1 ) ] 1 / 2 )  

Io{ �88 P(AJ) 2 [-(qf- 1 _ (2 - qll )P-1)2 _~ An2(p- - - u , 2  1)]1/2} (3.16) 
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and writing out  the componen t s  of Eqs. (3.14) and (3.15) gives, for 21 = ,~2 

qlt = ao 

2 - - q l  I = a  o (3.17) 

q 1 2 = 0  

a n d  fo r  )~1 ~ ~2 

q l l  = ao + a~ qP~ ~ (3.18) 

2 - qll = a0 + a~(2 - q11) p -  1 (3.19) 

q12 = alqP2 1 (3.20) 

Finally, we have the constraint  imposed by the order  pa rame te r  equat ion 
(2.25) 

q12>~0 if p = o d d  (3.21) 

Equat ions  (3.16)-(3.21) consti tute the order  pa rame te r  equat ions for the 
case n = 2. We are now going to solve them. 

3.1.1. Case of One Dist inct  Eigenvalue A. In this case 21=22 
and Eq. (3.17) a lready dictates 

qll =q22 = 1, q 1 2 = 0  (3.22) 

It is easy to see that  this solution is also consistent with Eq. (3.16) for all 
3J, i.e., all t empera tures  T, and all p since 11(0)= 0 and I o ( 0 ) =  1. Our  
stability analysis, however,  will reveal that  qll = q22 = 1, q12 = 0 represents 
only the h igh- tempera ture  solution. 

3.1.2. Case of T w o  Dist inct Eigenvalues /~1 and X 2. In this 
case we have 21-r 22 and we have to distinguish three different cases. 

Case a. q ,  # 1 and  q12 = 0. Equa t ion  (3.20) is au tomat ica l ly  satisfied 
when q12 = 0 .  Since qll # 1, we can further satisfy Eqs. (3.18) and (3.19) by 
choosing 

2(ql I _ 1 ) q p l  1 
ao=q11  + p-1  ( 2 _ q l l ) p - 1  (3.23) 

q l l  - -  

2(q~1-  1) (3.24) 
al = qlPl 1 _ (2 - q11) p -  1 

Thus,  the only equat ion  which remains to be satisfied is Eq. (3.16). It now 
becomes 
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I i [ l p (AJ )  2 (qf1-1-(2-q11)  p ~)] 
qll - 1 = io[�88 (qf-1 _ (2 - qll )p- 1)-] (3.25) 

where we were able to omit any moduli since q ~ l = ( l + ( q l ~ - - l ) ) ,  
( 2 -  q n ) =  ( 1 -  ( q l 1 -  1)), and since 11 ( - z )  = - I i ( z ) ,  I o ( - z )  = Io(z). This 
is a transcendental equation which can be solved numerically. We see 
immediately that whenever qll = 1 + Aq is a solution, then qll = 1 --Aq will 
be a solution as well. This simply means that we can interchange the roles 
of ql~ and q22, which in turn is simply a manifestation of the symmetry of 
the annealed partition function (2.3) under interchange of coordinates S] 
and S~. 

A numerical study of Eq. (3.25) shows that no solutions exist for small 
A J, i.e., at high temperatures T. 

For  p = 2 ,  3, 4 we find one AJc such that for all AJ>AJc, i.e., for all 
low temperatures T<Tc,  we have exactly one solution 1 < q 1 1 < 2  and 
one solution 0 < q ~ x <  1 corresponding to the above-mentioned inter- 
changeability of ql~ and q22. 

For all p > 4  there are two transition temperatures. For  
AJcl < A J< AJc2, i.e., for low temperatures To, > T >  Tc.2, we have two solu- 
tions 1 < qllb < qllo < 2 and two solutions 0 < q~l~ < qllb < 1 (corresponding 
to the interchangeability of qH and q22). When AJ>AJ,.2, i.e., T <  Tc2, 
there exists only one solution 1 < qll < 2 and one solution 0 < qll < 1. 

The phase transition points AJ, and AJc2 can be determined analyti- 
cally as follows. The right-hand side (rhs) of Eq. (3.25) is equal to 0 for 
qll = t. For  ql~ > 1, it is always positive and bounded from above since 
I1/Io < 1. The left-hand side (lhs) of Eq. (3.25) constitutes a straight line of 
slope 1 through q~l = 1. Thus, we shall always get at least one intersection 
of the lhs of Eq. (3.25) with the rhs if the derivative of the rhs at q11 = 1 
is greater than 1 

0 (rhs) qll P ( P -  1)(A J)2 
~qll = 1 - 4 .> 1 (3.26) 

This relation will be satisfied for all AJ greater than the critical value 

_p 4 11/2 
AJc= (p- -  1) (3.27) 

It turns out that this critical value represents exactly the AJc we found 
above for p = 2, 3, 4, and it represents AJc2 for p > 4 

_p 4 q 1/2 

(p-- 1)A 
(3.28) 
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Although there is not a simple analytical expression for AJc~, we always 
have 

I 4 11/2 
AJc~ < p ( p _  1)J (3.29) 

Our stability analysis in Section 3.2 will show that the solutions q11, 
q22 and q11o, qa2o represent the low-temperature states of our model, 
whereas the solutions qll~ and q22b are unstable. 

A final note regarding the case p = 2. We have just determined the 
diagonal solution Qa of the order parameter equation (2.23) for n = 2 and 
p = 2 .  As we have shown in Eqs. (2.27) and (2.28), the most general 
solution for the order parameter equations (3.16)-(3.21) in this case is 
then given by 

Q = O r .  diag(#1, 2 - # 1 ) '  O (3.30) 

where O is an arbitrary orthonormal 2 x 2 matrix and where #1 coincides 
with the order parameter qll of the matrix Qd which we obtained above. 
Since the most general orthonormal 2 x 2 matrix O is of the form 

(cos(~b/2) - sin(~b/2)'] (3.31) 
O - \ sin(~b/2) cos(~b/2) J 

we therefore find that the most general solution of the order parameter 
equations (3.16)-(3.21) when p = 2 is given by 

qll = 1 + ( # 1 -  1) cos(~b) 

q22 = 1 - (#1 - 1 ) cos(~b) (3.32) 

q12 = (#1 - 1) sin(~b) 

where ~b is an arbitrary angle. The stability analysis in Section 3.2 will show 
that this solution is stable. 

Case b. q11=1, q12r and p > 2 .  Since q~2r and q t ~ = l ,  we 
can satisfy the order parameter equations (3.18)-(3.20) simultaneously by 
choosing 

a o -- 1 --q21;P (3.33) 

a I ~ qR1[P (3.34) 

The only equation which then remains to be satisfied is Eq. (3.16). It now 
becomes 

i i( �88 iq121 p 1) 
Iq121 = io(�88 iq12[p 1) (3.35) 

Again this is a transcendental equation which can be solved numerically. 
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A numerical study shows that no solutions exist for small A J, i.e., at 
high temperatures T. 

For all p > 2  we find one AJc3>AJ c or, respectively, one 
AJ,.3>AJ,.2>AJc,, such that for all AJ>AJc3 , i.e., all very low tem- 
peratures T<T,.3, we have two solutions 0<q i2b<q~2o< l  and two 
solutions - 1  < q~2,< ql2b<0. The negative solutions are simply obtained 
by changing the sign of the positive solutions and arise from the symmetry 
of Eq. (3.35). Negative solutions for p = o d d  do not exist because of 
Eq. (2.25). Although there is no simple analytical expression for AJ,.3, we 
always have 

~p 4 11/2 
AJ'3> (p-- l)j (3.36) 

Our stability analysis in Section 3.2 will show that all solutions q12o 
and q~2~ are unstable. 

Case C. q11:fil, q12~0, and p > 2 .  Since q11r Eqs. (3.18) and 
(3.19) have the unique solutions 

2 ( q H -  1)qf~ -~ 
a o = q l l +  p-1 (3.37) 

qll - ( 2 - q 1 1 )  p 1 

2(q11- 1) 
al ~ p-1 (3.38) 

qli -- (2-- q11) p - l  

By inserting Eq. (3.38) into the order parameter equation (3.20), and since 
we require q12 r 0, we get 

i 
]l/(p-- 2) 

q12 = q p ~ - l _ ( 2 _ q l l ) p  1 

[ [1  + ( q l l - - l ) ]  p 1--[1--(q11--l)] p l.]l/(p-2) 
= 2 ~ 1 1 ~  "1 ) 

= ( p - l ) +  p -1  _ )k t 1)1/(p-2) 
k>l, odd k (qll 1 >I-(p-- 

(3.39) 

For p > 2, this is in contradiction to the constraint q12 ~< 1, Eqs. (3.7) and 
(3.8),'imposed on q12 by our model. Thus, there are no solutions qll :~ 1, 
q12 4:0 when p > 2. 
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3.2. S ta t ionar i ty  of the Free Energy 

The Lagrange multipliers ) ~  in Eqs. (2.7) and (2.10) are only 
auxiliary parameters which help to evaluate the free energy at the equi- 
librium configuration of the parameters q~.  If we knew how to evaluate 
the free energy without the detour of the auxiliary 2~,  we should obtain 
exactly the same free energy as a function of the same equilibrium 
configuration of the parameters q~,  but without any ) ~ .  Thus, the only 
physical parameters of the free energy are the q~a. 

Stationarity of the free energy for our annealed system now means that 
its free energy is a minimum with respect to fluctuations of the spin con- 
figuration about the equilibrium point, i.e., with respect to fluctuations of 
the order parameters q ~  about their equilibrium values. However, from 
Eqs. (3.4) and (3.5) we have the constraints q 2 2 = 2 - q ~ l  and q21=q12 
resulting from our normalization condition for n-vectors and from our 
definition (2.5) of q~.  The order parameters q~  can therefore only 
fluctuate within these two constraints imposed by the model, and the 
free energy becomes a function of two independent order parameters q ll 
and q12- 

From Eqs. (2.7), (2.8), and (2.12) we then obtain the free energy per 
spin for the n = 2 model as 

k T  u ~  

= - G *  

( p -  1)(~j)  2 

4 
[qPl + (2 -- qll )P + 2 1q121P] 

- In fllsll = ,/5 exp 

+ p(~j)2  Iq121 p 

(p - 1 )(A J)  2 

4 

p(AJ)  2 

4 

{ ~  [qPf  1(S l)2 + (2 - q~)P 

i S I S  2} dS 1 dS 2 

[-qP~ + (2 - qll)P + 2 Iq~21 P] 

- -  [qp;-~ + ( 2 - - q l l ) p  -~]  

- l n  Io ( P ( ~  { [qP l  

1 ($2)2] 

(3.40) 

t ( 2 _ q l l ) p  112+A,,2~Pl~12 l)-tl/2)_ln2rcx/~j 

(3.41) 
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where we have made the coordinate transformation (2.15) and used Eqs. 
(2.18), (2.21), and (A10) in the evaluation of the integral in the last step. 

The free energy (3.41) will be stationary (stable) if it constitutes a local 
minimum with respect to fluctuations 611 and ~ 1 2  about the solution points 
qll and q12. This has to be investigated for all possible solutions of the 
order parameter equations which we obtained in the previous section. 

Case a. q l l =  1 and q12=0. The free energy in Eq. (3.41) will be 
stable if its Hessian matrix with respect to qll and ql2 is positive definite. 
Evaluating the Hessian matrix 

Cqql I 0ql 1 kT 0qll (~q12 
H = ~ ____0 2____ a__a_ 02 (3.42) 

\c~qll OqlzkT ~q120qls163 
at the solution point qll = 1, q12 = 0 yields the two eigenvalues 

~I -P(P-1)(Aj)2 [ P(P- ~ )(AJ)2-] (3.43) 

~3(Aj)2 [ 2 -  (Aj)21, p = 2  (3.44) 
~2= (0, p > 2  

This means that for p = 2 the solution (3.22) is stable if A J <  ~ and 
unstable if A J> ,,~. 

For p > 2  the solution (3.22) is unstable if A J> {4/[p(p-1)]} 1/2 . 
If AJ<{4/[p(p-1)]} 1/2, however, the Hessian becomes positive 
semidefinite and leaves us in aporia. We then have to look for higher-order 
fluctuations. One can show that for p > 2 and infinitesimal fluctuations 6~  
we have 

In exp q ~ - 1 ( S ~ ) 2 + - -  ~ c~PflS~S ' dS 
IlS[I = x f ' ~  = 1  2 

l n f  exp [P(4J '2  ~" " ] q~p-l(s~)2 d S +  Z 2p-2 = O(6=e ) (3.45) 
IIStl = - , / g  ~ =  1 ~ < fl  

By using this relation, we find the following expansion for the free energy 
(3.40), (3.41) about the solution point qn = 1, q12 = 0: 

a 

kT +In  2~ + 1 1 

(p - 1)(A J) 2 
2p - -  2 + 2 1(~12]P+0((~41)+0((~12 ) (3.46) 
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where ~1 is given by Eq. (3.43). From this expansion we see that for 
all p > 2  stability arises from pth-order fluctuations in q12 if 
A J< { 4 / [ p ( p - 1 ) ] }  ~/2. We shall call this tenuous stability "pth-order 
stability." 

In summary, the solution q n = l ,  q12=0 is stable if A J< 
{ 4 / [ p ( p - 1 ) ] }  l/z, i.e., if T>Tc,  and becomes unstable if AJ> 
{ 4 / [ p ( p - 1 ) ]  }1/2, i.e., if T <  Tc. Thus, it represents the high-temperature 
solution for all p. 

Case b. q n r  a n d q l z = 0 .  
p = 2: In this case the free energy from Eq. (3.40) becomes 

q ~ -  In exp SrQS dS (3.47) kT  4 ~ 2 ~,/~ = 1 I l s l l  = ./2 

~2cr = 1 q~2 represents the square of the Euclidean matrix norm for the 
matrix Q. It is easy to show that the Euclidean matrix norm is invariant 
under orthonormal similarity transformations. Further, the integral on the 
right-hand side of Eq. (3.47) is invariant under orthonormal similarity 
transformations, as we saw in Section 2. Thus, for p = 2, a/kT is invariant 
under orthonormal similarity transformations of the matrix Q. This 
corresponds to the invariance of the annealed partition function (2.3) under 
orthonormal transformations of the spin vectors Si when p = 2. Finally, we 
have the constraint #2 = 2 -  #1 resulting from our normalization condition 
for n-vectors. 

The stability of a/kT is therefore completely determined by the fluctua- 
tions of the eigenvalue #1 about its equilibrium value. Rewriting Eq. (3.47) 
in terms of the eigenvalue #1 gives 

a (A J) 2 [/~2+ (2_#1)2] 
kT  4 

= - In 2re ~ - -  (A J)2 �9 (A J)2 2 +---2 - - ( t ~ l - 1 ) 2 - 1 n I ~  (3.48) 

where we have used Eqs. (2.18), (2.21), and (A10) in the evaluation of the 
integral in the last step. This free energy will be a minimum with respect 
to fluctuations 61 about the equilibrium values/q if its second derivative at 
/~1 is positive. By taking the second derivative of Eq. (3.48), we get 

02 a 
- (A J) 4 (/~1 -- 1) 2 + (A J) 2 [2 - (A J) 2 ] (3.49) 

0# 2 kT  
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where we have used the fact that 

II[(AJ) 2 ( # 1 -  1)] 
l q -  1 = io[(Aj)2 (I-t2- 1)] (3.50) 

from Eq. (3.25) when p = 2. 
A numerical plot of the right-hand side of Eq. (3.49) for the solutions 

#1 obtained in the previous section shows that a2/ap2(a/kT)>O for the 
entire low-temperature continuum A J > x ~ .  Combined with our remarks 
above, this means that the low-temperature solution (3.32) for p = 2  is 
stable for all zJJ > X/2, i.e., for all T < To. 

p > 2: Evaluating the Hessian for the free energy (3.41) at the solution 
points qll given by Eq. (3.25) and q1: = 0 shows that one eigenvalue is 
identically equal to 0, for all p's. Thus, the Hessian is semidefinite and 
cannot give us a conclusive answer with respect to the stability of our 
solutions. We therefore have to look again at higher-order fluctuations. 

By using the relation (3.45), we find the following expansion for the 
free energy (3.40), (3.41) about the solution points qll :~ 0, q12 = 0: 

a 
- -  = - In 27z ,x/-2 P(Aj)2 kT ~[qp~- l+(Z_q11)p  1] 

(p - 1 )(A J) 2 
+ 4 [qP l+(2 -q l l )P]  

- l n l o { ~ [ q f l - l - ( 2 - q 1 1 )  p 13} 

1 ( p  - 1)(A j )  2 
-["2 ~1~21 "~ 4 i,~i21,~+o(641)_+_o(6ff. ~ 2) (3.51) 

qn is hereby a solution of Eq. (3.25). r is the first eigenvalue of the 
Hessian (3.42) and is now given by 

~ 1 - P ( P -  1)(AJ)2 { 
4 [ q p z 2 + ( 2 - q t l )  p-2] 1 

x [qp~2+(2--q11)P 2] 

X [1 -- (qll -- 1) {P(~J)2 [-qPl- 1 

p(p - 1 )(zlJ) 2 

,2qll, l }l qll ,,2]} 
(3.52) 

A numerical plot of r for the solutions qll obtained in the previous 
section shows that i t  is positive for all qll when p =  3, 4 and for the solu- 
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tions qHo when p > 4 .  For the solutions q~lb, on the other hand, ~ is 
negative. This means that for p = 3, 4, all low-temperature solutions qll are 
stable. For  p > 4, only the low-temperature solutions ql~o are stable. Again, 
the stability arises from pth-order fluctuations in q12- 

Case c. qll = 1, q~2 ~0 ,  and p >2.  Evaluating the Hessian matrix 
(3.42) for the free energy (3.41) at the solution points qll = 1 and q12 given 
by Eq. (3.35) yields the two eigenvalues 

P(P-1)(AJ)2 ( l P-1  ) 
41 - 2 Iq121 p-2 (3.53) 

{2=P2(p-1)(Aj)2 [ (p-1)(AJ)2 1 
2 ]q~2]p 2 1 2 [q121 p-2 (1 --q~2) (3.54) 

where we have used Eq. (3.35) in the evaluation of the right-hand sides. 
In the previous section we have seen that Iql2t ~< 1 for all p; see 

Eqs. (3.7) and (3.8). Thus, for p > 2  the eigenvalue 41 will be negative. 
There are no stable solutions with ql2 ~ 0 when p > 2. 

3.3. S u m m a r y  

The free energy per spin for the n = 2 model was derived in Eq. (3.41) 
in the thermodynamic limit N--* oe by the method of steepest descent from 
Eq. (2.6). It will only hold for stable solutions of the order parameter equa- 
tions. If we find more than one stable solution at a certain temperature T 
(as is the case for p > 4), the solution which yields the lowest free energy 
(3.41) will constitute the true equilibrium configuration. This makes both 
physical sense and arises mathematically from choosing the dominant 
saddle point in the evaluation of Eq. (2.6) by the method of steepest 
descent. 

For  p > 4 we found that between the temperatures Tel and Tc2 both the 
high-temperature solution qll =q22 = 1, q12=0 and the "antisymmetric" 
diagonal solution qHo :~ qzza, q12 = 0 are stable. A numerical comparison of 
the free energy (3.41) for these two solutions for various p > 4 shows that 
in all cases we find exactly one AJ c with AJcl < AJ C < AJc2. For A J< AJc, 
i.e., for T >  Te, the high-temperature free energy remains the lower free 
energy, whereas for AJ>z]Jc, i.e., for T <  To, the "antisymmetric" free 
energy has a lower value. Hence, even for p > 4, we actually have only one 
phase transition at a certain AJc < {4/[p(p-1)] }1/2 

Combined with the results from the previous sections, this allows us to 
describe the various cases for the n = 2 model as follows. 
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3.3.1.  C a s e  p = 2 .  The model can be described by one order 
parameter #1 and we have one phase transition at AJc = { 4 / [ p ( p -  1)] )1/2 
=,,/~. 

For  3 J >  AJc, i.e., T <  To, the order parameter 1 < #1 < 2 is a solution 
of Eq. (3.25). For  A J <  AJc, i.e., T >  Tc, #1 is identically equal to 1. 

The two-dimensional order parameter matrix Q is given in terms of #i 
by Eq. (3.32). The free energy per spin is given by Eq. (3.41). 

Thus, for T >  Tc we have the high-temperature solution qll = q22 = 1, 

q12 =0.  
At T =  T~ we have a phase transition. It is a first-order phase 

transition since -Oa/OT has a discontinuity at T =  T C. However, the spin 
configuration (qll, q22, q12) is a continuous function of T at T~. 

For  T <  To, we obtain a degenerate low-temperature continuum of 
states which lie on a circle of radius # 1 - 1  about ql~ = 1, q12=0 in 
configurational order parameter space. The degeneracy results from the 
invariance of the annealed partition function (2.3) under orthonormal 
transformations (two-dimensional rotations) of the spin vectors S~ when 
p = 2 .  

3.3.2.  C a s e  p = 3 ,  4. The model can be described by one order 
parameter q11, and we have one phase transition at AJc= 
{ 4 /[p(p  - 1)] }1/2. 

For A J >  AJc, i.e., T <  To, the order parameter 1 < qll < 2 is a solution 
of Eq. (3.25). For  A J < A J c ,  i.e., T >  Tc, qll is identically equal to 1. 

The two-dimensional order parameter matrix Q is given by q11, 
q z 2 = 2 - q 1 1 ,  and q12=0. The free energy per spin is given by Eq. (3.41). 

Thus, as for p = 2, we have the high-temperature solution qll = q22 -- 1, 
q12=0 when T >  Tc. 

At T =  T~ we have a phase transition. As for p = 2, it is a first-order 
phase transition with the spin configuration (q11,q22, q12) being a 
continuous function of T at To. 

For  T <  To, we obtain a diagonal "antisymmetric" solution qll r q22, 
q12=0 with twofold degeneracy. The degeneracy arises from the inter- 
changeability of qll and q22 which corresponds to the symmetry in the first 
and second vector components in the annealed partition function (2.3). 

3.3.3.  C a s e  p > 4 .  These models are almost completely analogous 
to the cases p = 3, 4. The (main) difference is that the phase transition at 
Tc is not only a first-order transition, but the spin configuration 
(qll, q22, q12) displays a jump discontinuity at T c as well: q11--1 for 
T > T  C, and l + A < q 1 1 < 2  for some A when T < T c .  

Further, we do not have an analytic expression for AJ c. However, we 

822/68/5 6-18 
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know that A J  c < {4/[p(p - 1)] } ~/2. Numerically we find A J  c = 0.43422 for 
p = 5 and AJ C = 0.31918 for p = 6. 

Since AJc< { 4 l i p ( p -  1)]} 1/2, we find A J ~ O ,  i.e., Tc~  oo a s p ~  oo. 
From Eq. (3.25) we further see that for finite AJ and p--,  oo the only 
possible configurations are qH =2 ,  q22=0, q12=0 and q11=0, q 2 2 = 2 ,  

q12 = 0. This is also what we expect physically as the ordering element of 
interactions becomes dominant when p ~ oo. 

4. n = 3  M O D E L  

4.1. So lu t ions  

Because of Eq. (2.5), the three-dimensional order parameter matrix Q 
is symmetric. However, as in the case n = 2, its order parameters q11, q22, 
q33, q~2, q13, and q23 are not independent. Our normalization condition for 

n-vectors, IIS~ II = ,,/-3, imposes constraints on the vector components S 1, 
S 2, and S 3, which, because of Eq. (2.5), then translate into the following 
constraints for the order parameters: 

q33 = 3 - qll - q22 (4.1) 

0 ~< q~ ~< 3 (4.2) 

- 1.5 ~< q ~  1.5 if p = even (4.3) 

0 ~< q~  ~< 1.5 if p = odd (4.4) 

where we have incorporated the constraint imposed by Eq. (2.25) into the 
last equation. In accordance with our previous notation, Q has the eigen- 
values #1, #2, and #3, while the corresponding matrix Q(p-l~ has the 
eigenvalues 21, 22, and 23. 

The right-hand sides of the order parameter equations (2.23) for n = 3 
are evaluated in Appendix A. By inserting the expressions (A17) and (A21) 
into Eq. (2.23), we get 

with 

~o a expl- --a~u](1 -- u) 1/2 Io(b~u) du 
= l, 2, 3 (4.5) 

3p(AJ) 2 
b ~ -  8 ( 2 e -  2r) (4.7) 

3p( AJ) 2 
a~ -- T (22~ - 28 - 2~) (4.6) 
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One can easily show that #1 + #2 ~- #3 ~---3, as expected from Eq. (4.1) and 
the invariance of the trace of a matrix under orthonormal similarity trans- 
formations. This means that Eqs. (4.5) for ~ = 1, 2, 3 are not independent. 
If we can satisfy Eqs. (4.5) for c~ = t and c~ = 2, then the equation for c~ = 3 
will be satisfied automatically. 

The order parameter equation (2.24) for n = 3, on the other hand, 
becomes 

Q=aoI  

Q=aoI  + al Q (p- l) 

Q= aoI + aI Q(P-1) + a2[Q(P-1)]2 

(21 = 22 = 23) (4.8) 

(2~ = 28 r 27) (4.9) 

(,~1 ~ , ~  ~ ~ )  (4.10) 

Finally, we have the constraint imposed by the order parameter equation 
(2.25) 

q ~ > 0  if p = o d d  (4.11) 

Equations (4.5)-(4.11) constitute the order parameter equations for the 
case n = 3. We are now going to solve them. 

4.1.1. Case of One Dist inct  Eigenvalue k. In th is  case we 

have 21 = 22 =/~3 and Eq. (4.8) already dictates 

qll = q22  --- q33  = 1, q12  = q13  = q23 = 0 (4.12) 

This solution is also consistent with Eq. (4.5) for all A J, i.e., all tem- 
peratures T, and all p since Io(0)= 1 and #1 =/~2 = #3 = 1. Our stability 
analysis, however, will reveal that, as for n -- 2, the solution q~ = 1, q~8 = 0 
represents only the high-temperature solution. 

4.1.2. Case of T w o  Dist inct  Eigenvalues k a and k v. In this 
case we have 2~ =)~8 ~ L/. Hence, a s = b, and the integrals in the order 
parameter equation (4.5) can be further evaluated. This is done in 
Appendix A. By inserting the expressions (A22), (A26), and (A27) into 
Eq. (2.23), we get 

eZ I 
#~ = #8 = ~zz 2 erfiTx/z) 

with 
3p(~J )  2 

z _= ~ (27 - 2~) (4.14) 

The corresponding order parameter equation for #7 yields nothing new. 
Equation (4.13) replaces the order parameter equations (4.5) when we have 
only two distinct eigenvalues. 



946 Taucher and Frankel 

Choos ing  a 1 = 0 in the order  pa r ame te r  equa t ion  (4.9) s imply recovers 
the case of one dis t inct  eigenvalue 2. Thus,  we require  

a l  v a 0 (4.15) 

F o r  p = 2 we can a lways  satisfy Eq. (4.9) by choos ing  a~ = 1 and 
a 0 = 0. As we have shown in Sect ion 2, Eqs. (2.27) and  (2.28), when p = 2 
it suffices to find a d iagona l  so lu t ion  Qd of Eq. (4.13). The mos t  general  
so lu t ion  Q is then ob ta ined  by  an a rb i t r a ry  o r t h o n o r m a l  s imilar i ty  t rans-  
fo rma t ion  of Qa- 

F o r  p > 2, the off-diagonal  e lements  of the o rder  pa r ame te r  equa t ion  
(4.9) are 

_ p - 1  ( 4 . 1 6 )  q ~  - a 1 q ~ 

Since p > 2 and a~ r 0, q ~  can then only assume the values 

q ~  = qo, 0 (4.17) 

for some qo. Here  we have also used Eq. (4.11). 
The  d i agona l  e lements  of the o rder  pa r ame te r  equa t ion  (4.9), on the 

o ther  hand,  are 

f ( q ~ )  = alq~ p-~ - q ~  + a o = 0 (4.18) 

The der ivat ive  f ' ( q ~ )  of f can have at most  one zero for q ~  ~> 0 and real. 
This means  that  Eq. (4.18) will have at  most  two real solut ions  q ~  ~> 0. The 
cond i t ion  q ~ > 0  is required by Eq. (4.2). 

The most  general  o rde r  pa r ame te r  mat r ix  Q which we have to 
invest igate for p > 2  can therefore have at mos t  two dist inct  d iagona l  
e lements  and  its off-diagonal  e lements  can only take  on  the values 0 or  qo. 

M o d u l o  cons tan t  o r t h o n o r m a l  s imilar i ty  t ransformat ions ,  which s imply 
rea r range  the d iagona l  e lements  of Q, this reduces the p rob lem of f inding 
Q to eight  different cases: 

Case 1: ql l  =q22,  q33 = 

Case 2: qll =q22,  q33 = 

Case 3: qH =q22,  q33 = 

Case 4: qll  = q22, q33 = 

Case 5: ql l  = q22, q33 = 

Case 6: ql~ = q22, q33 = 

Case 7: qH = q22, q33 = 

Case 8: q~  = q22, q33 = 

3 - 2q11, q12 = q13 = q23 = 0. 

3--2q11,  q12=qo, q 1 3 = q 2 3  = 0 ,  and  p > 2 .  

3 - 2ql 1, q12 = q23 = 0 ,  q13 = qo, and  p > 2. 

3 - 2 q 1 1 ,  q 1 2 = q 1 3 = 0 ,  q23=qo, and  p > 2 .  

3 - 2qH, q~2 = q13 = qo, q23 = 0, and  p > 2. 

3 - 2q11, q12 = q23 = qo, q12 = 0, and  p > 2. 

3 - 2 q H ,  q 1 2 = 0 ,  q13=q23=qo,  and p > 2 .  

3 - 2 q H ,  q~2=q13=q23 = q o ,  and  p > 2 .  
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One can analyze these cases by using the following facts. Q and Q(P 1) 
have the same number of distinct eigenvalues, since Q is a polynomial in 
Q(p-1). Q is a linear polynomial in Q(P-1). For n >~ 2, the only possible real 
solutions of 

(a + b)n=a~ + b ~ (4.19) 

are 
a = 0  or b = 0  

a = 0  or b = 0  or a = - b  

For n >~ 2, the only possible real solutions of 

( a + b ) n = a ~ - b  n 

(n = even) 
(4.20) 

(n = odd) 

(4.21) 

are 

b = 0  or a = - b  (n--even)  (4.22) 
b = 0 (n = odd) 

In order to get two identical eigenvalues #, the characteristic polynomial 
of Q 

ch(/~) - - #3 + 3#2 _ bp + c (4.23) 

must satisfy the condition 

c = _+ 2(1 - b/3) 3/2 + b - 2 (4.24) 

The detailed analysis of cases 1-8 is lengthy and therefore we shall 
merely state the results here. 

There are only two possible solutions Q of the order parameter 
equations (4.9) and (4.13) for T~>0. In addition, there are four singular 
solutions which exist only at T =  0. 

The first nonsingular solution is the, for p > 2 diagonal, solution 

Q = P r ' d i a g ( # l ,  #1, 3 -  2 # 1 ) ' P  ( p > 2 )  
(4.25) 

Q = O r . d i a g ( # l , # l , 3 - 2 1 ~ l ) . O  ( p = 2 )  

where the similarity transformation with P represents an arbitrary per- 
mutation of the diagonal elements of diag( .-- ) and where O is an arbitrary 
orthonormal matrix. The order parameter #1 is a solution of 

3 [ - l + 2 z  \re/(x/zJ(Z~l/2erfi~i] (4.26) 
=~zz L 2 
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with 

3p(~JV 
z - ~ [ ( 3 - 2 # 1 )  p 1-/~1 p ~] (4.27) 

This is a transcendental equation which can be solved numerically. 
A numerical study of Eq. (4.26) shows that no solutions exist for small 

3J, i.e., at high temperatures T. 
For  all p we find one AJcl such that for all 3 J >  AJc,, i.e., for all low 

temperatures T<T, . , ,  we have exactly two solutions 0</~lo<~qb<l .5 .  
This dichotomy does not correspond to any obvious symmetry of the 
annealed partition function (2.3). Furthermore, there is no simple analyti- 
cal expression for AJc~. In contrast to the n = 2 model, the diagonal solu- 
tions for the n = 3 model follow the same pattern for all p and do not 
change pattern if p > 4. 

The stability analysis in Section 4.2 will show that only the solutions 
#1o are stable. 

The second nonsingular solution Q of the order parameter equations 
(4.9) and (4.13) is 

ti qo q)qo Q =  1 o 

qo 

(4.28) 

Its order parameter qo is a solution of 

1 - q o  = ~ 2 erfi ) 

with 

9p(~J) 2 
z = ~ q o  p I (4.30) 

This is a transcendental equation which can be solved numerically. 
A numerical study of Eq. (4.29) shows that no solutions exist for small 

A J, i.e., at high temperatures T. 
The case p = 2 is contained in Eq. (4.25). For  all odd p > 2 we find one 

AJc2 > AJcl such that for all A J >  AJc2 , i.e., for all very low temperatures 
T <  To2 we have two solutions 0 < qo~ < qoo < 1. For  all even p > 2 we find 
two transition points AJc2 and AJc3. If AJcz<AJ<AJc3 , i.e., for all 
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(intermediate) low temperatures Tc2>T>Tc3 we have two solutions 
0 < qob < qoo < 1. Above AJc3 , i.e., for all very low temperatures T <  To3 we 
find two negative solutions -0.5<qod<qoc in addition to the positive 
solutions qoo and qob. Again, there are no simple analytical expressions for 
Z~Jc2 and AJc3. 

Our stability analysis in Section 4.2 will show that all these solutions 
are unstable. 

Finally, we list the four singular solutions which exist only at T =  0, 

(0 +3 i/ t 15o +15 !) Q + =  _+3 0 , Q_+= _+1.5 1.5 (4.31) 

0 0 0 

The Q + exist for even and odd p's, while the Q exist only when p 
is even. These solutions are understood modulo constant orthonormal 
similarity transformations which rearrange the diagonal elements. The 
stability analysis in Section 4.2 shows that these solutions are excluded as 
well. 

4.1.3. Case of Three Dist inct  Eigenvalues h 1 7~A2~A 3. I n  

this case the order parameter equations (4.5) cannot be further simplified 
and have to be evaluated numerically. We have performed an extensive 
numerical investigation and found that no solutions Q with 21 :~J,2 :~)]'3 
exist. 

4.2. S ta t ionar i ty  of  the Free Energy 

By arguments analogous to the ones used for the stability analysis of 
the n = 2  model we can restrict our stability analysis to fluctuations 611, 
622, 612, 613, and (~23 of the order parameters qlt, q22, q12, q13, and q23, 
respectively. The order parameters 2~  are again just auxiliary quantities 
and the order parameter q33 is constrained to q33 = ( 3 -  q l l -  q22) by our 
normalization condition for n-vectors. Further, the matrix Q must be 
symmetric because of Eq. (2.5). 

The free energy for the n = 3 model is obtained from Eqs. (2.7), (2.8), 
and (2.12) in terms of these parameters as 

- - =  l i r a  - l n ( Z u )  
k T  u ~  
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(p  -- 1 )(A J )  2 
- 4 [qf~ + q~2 + (3 - qH - q22) p ] 

(p  -- 1 )(A J )  2 
+ ([qldP + Iq,31P + Iq231 p) 

2 

--  t ~  -I-q2 2 ( S )  lnfl ls ,=. /  exp [qf1-l($1)2 p-1 2 2 

-k - (3 - -q11- -q22)  p 1 ( $ 3 ) 2 ]  

+ ~ ( q P 2 1 S I S 2 + q f 3 1 S I S 3 + q P 3 - 1 S 2 S 3 ) } d S  (4.32) 

(p - 1)(,~J)~ 
-- [ P qf2 + (3 - qll 4 ql l  q- -q22)  p ] 

(p  -- 1 )(Z~J) 2 
+ (]qlzlP + Iq13[P + 1q231 p) 

2 

- In erfi{ [3p(AJ)2/4] (2~ - 2~)} ~/2 3p(AJ)___~2 2~ - I n  6z 3/2 (4.33) 
{[3p(dJ)2/4](2~-2~,)} m 4 

In the evaluation of the integral in the last step we have exploited the fact 
that there are no solutions with /~1 ~ 22 ~ 23 and we have made the coor- 
dinate transformation (2.15) and used Eqs. (2.18), (2.21), and (A27). The 
eigenvalues of Q(P 1) are denoted by 2~ = 2~ ~ 2~ as in the previous section. 

The free energy (4.32) will be stationary (stable) if it constitutes a local 
minimum with respect to fluctuations 611, 622,612, 513, and 623 about the 
solution points q~,..., q23- This has to be investigated for all the possible 
solutions Q of the order parameter equations which we obtained in the 
previous section. 

4.2.1. Case  Q = d i ag (1 ,  1 ,1  ). The free energy in Eq. (4.32) will 
be stable if its Hessian matrix with respect to q11,..., q23 ,is positive definite. 
Evaluating the Hessian matrix 

~2 a ~2 a ~2 a (~2 a ~2  a \  
- = I  

OqH ~qll k T  cgqH c~q22 k T  ~ql1 ~q12 k T  cgqH c~q~ 3 k T  ~3q~ 1 3q23 k T  

H -  

02 a d2 a 0 z a 02 a ~32 a 

3qal ~q22 k T  Oqzz 63q22 k T  ~q22 c~q12 k T  6~q2 2 6~ql 3 k T  63q2 2 ~q23 k T  
~2 a ~2 a ~2 a O 2 a O 2 a 

~qli 0q12 k T  0q22 ~q12 k T  ~q12 0q12 k T  ~q12 0q13 k T  dq12 ~q23 k T  
02 a 02 a 32 a ~2 a ~2 a 

~qll Oq13 k T  ~3q22 0ql 3 k T  ~q12 ~3q13 k T  ~3ql 3 0ql 3 k T  ~3ql 3 ~q23 k T  
~2 a c ~2 a ~32 a ~2 a (~2 a 

63qll 6~q2 3 k T  63q22 63q2 3 k T  6~ql 2 63q2 3 k T  63ql 3 63q2 3 k T  63q23 63q23 kT/  
(4.34 
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at the solution point q11----q22=l, q12=q13=q23=O gives, after a 
considerable amount of algebra, and by using Eqs. (B5), (B8), and (B10) 
from Appendix B in the evaluation of the occurring integrals, 

with 

(i 0 0 o) h2 hi 0 0 0 

H =  0 h 3 0 0 (4.35) 

0 0 h3 0 

0 0 0 h 3 

h i - P ( P -  21)(Aj)2113p(p--1)(Aj)2]IO J (4.36) 

h 2 = h i2  (4.37) 

h f(AJ) 2 [1 - 3(Aj)2] (p = 2) 
3= t0  (p>2)  (4.38) 

The two eigenvalues of the h~, h2 submatrix of the Hessian (4.35) are 

41 - p ( p  - 41)(A J)2 [13p(p-iol)(Aj)2].]  (4.39) 

~2=3~1  

These equations show that for p = 2  the high-temperature solution 
is stable if AJ<{lO/[3p(p-1)]} l /2=(5/3)  1/2 and unstable if A J> 
{lO/[3p(p - 1)] }1/2. 

For p > 2 ,  the high-temperature solution will become unstable if 
AJ>{lO/[3p(p--1)]}  1/2. If AJ<{ lO/ [3p (p -1 ) ] }  1/2, however, the 
Hessian is positive semidefinite and we have to look for higher-order 
fluctuations, as for the n = 2 model. By using the relation (3.45), we find 
the following expansion for the free energy (4.32) about the solution 
point qll = q22 = 1, q12 = q13 = q23 = O: 

a _ 3(Aj)2 In 12~ 
kT 4 

hi h2)  , (511~ ( P - 1 ) ( A J )  2 
-{- (311' 522)' h 2 h 1 ~522/ /+ 2 (1612] p + [5,3[ p + ]5231 p) 

-}- 0(611 512 ) "71- 0(621622)-}- 0(631)-{- 0(632) 

2p--2 2p -- 2)....~ 0((52~-- 2) "~ 0 ( 5  12 )"{-O(613 (4.40) 
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Equation (4.39) tells us that the hi, h2 matrix is positive definite if 
A J< {lO/[3p(p-1)]} 1/2 and indefinite if A J> {lO/[3p(p- 1)]} 1/2. 

Thus, for all p > 2  the free energy corresponding to the high- 
temperature solution is stationary for A J< {lO/[3p(p-1)]} 1/2 due to 
pth-order fluctuations in 612, ~13, and ~23, and becomes unstable if 
A J> {lO/[3p(p- 1)]} 1/2. 

4.2.2. 0 = 2  and Q=Or'diag(IJl,pl,3-2pl).O. For  p = 2 ,  

the free energy from Eq. (4.32) becomes 

kT 4 ~ q~2 _In exp SrQS dS (4.41) 
c~, f l=  1 IIS[I = -,,/'3 

5Z3r represents the square of the Euclidean matrix norm of the 
matrix Q. It is easy to show that the Euclidean matrix norm is invariant 
under orthonormal similarity transformations. Further, the integral on the 
right-hand side of Eq. (4.41) is invariant under orthonormal similarity 
transformations, as we saw in Section 2, Thus, for p = 2, a/kT is invariant 
under orthonormal similarity transformations of the matrix Q. This is 
analogous to the n = 2, p = 2 model, and corresponds to the invariance of 
the annealed partition function (2.3) under orthonormal transformations 
of the spin vectors Si when p = 2 .  Finally, we have the constraint 
/~3 = 3 -  #1 -/~2 resulting from our normalization condition for n-vectors. 

The stability of a/kT is therefore completely determined by the fluctua- 
tions of the eigenvalues/~1 and #2 about their equilibrium values ~1 = #2. 

Rewriting Eq. (4.41) in terms of the eigenvalues #1 and/~2 gives 

a (A J) 2 
k~ = ~ [U2 +/~2 + (3 -/~1 - #212 ] 

- In ;,,s,, =,/~ exp { ~ f ~  E#~(S 1)2 +/~2($2)2 

+ (3 - Ul -/~2)(S 3)2] } dS (4.42) 

This free energy will be a minimum with respect to fluctuations 61 and 62 
about the equilibrium values #1 =/~2 if its Hessian matrix with respect to 
#1 and #2 is positive definite. 

We can evaluate this Hessian at the equilibrium values /~ = #2 by 
using the relations (B5), (B8), and (B10) from Appendix B. After a 
considerable amount of algebra we obtain the following two eigenvalues for 
the Hessian of Eq. (4.42): 
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(A J)2{ [~M[�89 z 7 Mr3 7, z ] 9ME~,7, z] 
{1= 2 3 - ( A  J) 2 5, a -  kS, 

- 7/-v a -  - 3 -  - -  q mE:, 5, z] 5 M[�89 I, z] 

M[�89 z]2 ME3, sS,z] 2M[�89 s z]. 
ME�89 z] 2 ME�89 + MEk, 3, z] 2~' 

5, (4.43) 42- 2 1-5(Aj)2M[�89 5, 

with 

3p(aJ) 2 
z -  ~ E(3 - 2 # , )  p - z  - pf-13 (4.44) 

and where M[~, fl, z] represents Kummer's hypergeometric function 1F~ 
defined in Appendix A, Eq. (A8). 

A numerical plot of 41 and 42 for the two possible solutions #1o and 
#lb obtained in Section 4.1 shows that the Hessian is indefinite for Plb at all 
temperatures. In the case of PIo, however, it is positive definite for all 
A J> AJcl ~ 1.22306. 

Combined with our remarks above, this means that the low- 
temperature solution (4.25) for p = 2 is unstable if/zl = #lb. For /~1 =/qo, 
however, it is stable for all AJ>AJq, i.e., for all T<Tc~. Since 
AJc~<{lO/[3p(p-1)]} 1/2, both the high-temperature solution and the 
solution (4.25) with #1, are stable for AJq < A J< { lO/[3p(p- 1)] } 1/2. We 
then have to find the dominant saddle point by comparing the respective 
free energies as for the n = 2 model. 

4.2.3.  p > 2 a n d  Q=pr.diag(pl,Pl,3-2pl).P. Byusingthe 
relations (B5), (B8), and (B10) from Appendix B, we can evaluate the 
Hessian (4.34) for the free energy (4.32). After a considerable amount of 
algebra we obtain the Hessian 

(hi h2 0 0 i) h2 hi 0 0 

H =  0 0 0 

0 0 0 

0 0 0 

(4.45) 

with the two eigenvalues of the h i ,  h 2 submatrix given by 
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p ( p -  1)2 (A j)2 
41= 4 [qp~-Z+2(3_2qu)p 2] 

L 
+ (3_ 2qu)2(p 2 ) .  E2,5, 

M[�89 3, z] 2M[�89 3 5, z]V 

2 /6  MI--32' 7' z] ~ ~-7?-i- \-, 1,, L2, ~, Z ] 3  2 ME�89189 3~, z ] ~ 2 q ~ 1 2 (  3 ~ 2 q  l ~ ) p 

p ( p - 1 ) ( p - 2 ) ( A J ) 2 F  M 1 5 z] 
4 kqP~- 3 [~, -~, ME�89 ~, z3 

ME3, S 
+ 2 ( 3 -  2qu) p-3 ME�89 

5, 

(Aj)2qpf2 -~, ] 42 P ( P -  1)2 pZ(p_l )Z(Aj )4  2,,-2~ 3 M[�89 7 z 
- q l l r  " - -  M 1 3 4 4 10 [5, 5, z] 

p(p - 1)(p - 2)(AJ) 2 ME�89 25-, z] 
4 q~,~3 M[�89 3 z] (4.46) 5, 

The parameter z is given by Eq. (4.44). From the Hessian (4.45) and the 
relation (3.45) we then find the following expansion for the free energy 
(4.32) about the solution points q u = q z 2 # l ,  q12=q13=q23=O when 
p > 2 :  

a 3p(AJ) 2 (p - 1 )(A J) 2 
kT = - In 61r3/2 ~ qp11+ 4 [2q f l+(3 -Zqu)P]  

- I n  erfi{ E3p(3J)2/4] [(3 - 2qu) p- I  - qPl  1] }1/2 
{ [3p(AJ)2/4] [ (3 - 2qu)P 1 _ qlp- 1] } m 

(hi h~).(~.~ (p-1)(~J) ~ 

+ o(~ .  ~2) + o(~1~1~22) + o(~1) + o(~2) 
2p-2 2p-2) + O(6~-2)  (4.47) -[-O(612 )+O(613 

Here we have used Eq. (4.33) in determining the zeroth-order term, and 
the eigenvalues 41 and ~2 of the hi, h2 matrix are given in Eq. (4.46). 
Analogous expansions are obtained when qu = q33 or when q22 = q33. 

We have plotted ~1 and 42 for the two possible solutions #1o and/11~ 
obtained in Section 4.1 for several values of p > 2. In all cases we find that 
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the Hessian is indefinite for #1~ at all temperatures. For #~, however, it is 
positive definite for all zlJ> AJq. 

This means that the low-temperature solutions Q = pr. diag(#~, lq~, 
3 - 2 # l b ) - P  are unstable while the solutions Q=Pr .d i ag ( /q , , #~o ,  
3 -2#~o) -P  are stable for all AJ>AJc,, i.e., for all T<T~. Since 
AJ~<{lO/[3p(p-1)]} ~/2, both the high-temperature solution Q =  
diag(1, 1, 1) and the solution Q = P r . d i a g ( / ~ ,  #~o, 3 -  2 /~ , ) .P  are stable 
for AJ~I<AJ< {lO/[3p(p-1)]} m. We then have to find the dominant 
saddle point by comparing the respective free energies as for the case p = 2. 

4 . 2 . 4 .  0 > 2  a n d  q 1 1 = q 2 2 = q 3 3 = l ,  q 1 2 = q 1 3 = q 2 3 = q o  . The 
Hessian matrix (4.34) for the free energy (4.32) can in this case be 
evaluated by using the relations (C13), (C19), and (C28) from Appendix C. 
After a considerable amount of algebra one finds the Hessian 

l a a/2 c 0 - c )  
a/2 a c - c 0 

H = | c c b d d (4.48) 

\ o - c  d b d 

c 0 d d b 

P(P-1)(AJ) 2 P2(P-1)2(Aj)412M[3,73, x] M[�89 73,x] 1 

a =  2 20 L M[},  3 x]  + ~, ME�89 3, ] 

a-P(P- 1)~ (a J)= 
qo p-= 2 

+p2(p_ 1)2 (Aj)4aZ(p 2)[I_(M[ 3, ~, x] M[}, ~,x] ' ]  2 

4 -1o L 9 \ M [ } ,  3, x]  M[�89 3 x ~, ] )  

- - -  M i 3 x]  + M r !  5 \  [~,~, ,~, ~ ,x l  

p(p-1)(p--2)(Aa) 2 [ M [ } , '  x]  M[�89 x_._]] 7 _ 3, 3, 
2 qo p-3 ~ 3  L [=, x] M[�89 3 

c = _pZ(p_ 1)2 (Aj)2 M 3 

20 I_ME}, }, x] M[�89 -]~, ]J q~ 

with 

d=P2(p- 1) 2 (A J) 4 q2o(P_ 2) [1 (M[ 3, }, x] 
4 L~ \ ~ - ~ ,  ~, xl 

M 5 M 3 7  ) ]  3, 3 [~, xl 
\ [3, x] M ~ ~, [~, ~ ,~  

M[1,-5 x1~2 2, ~ J /  
3 X ME�89 3, 2) 

(4.49) 
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and where we have defined 

9 p ( a J )  2 
x = ~ qo p - - 1  (4 .50)  

The eigenvalues of this matrix can be found by following a de Almeida 
and Thouless procedure--see the appendix in ref. 8. We find 

~1 = b + 2 d  

~2.3 = 1 {3a + 2b - 2d_+ [(3a - 2b + 2d) 2 + 48c 2 ] ,/2} 

~4.5= � 88  [ ( a - 2 b + Z d ) 2 +  16c2] I/2 } (4.51) 

where a, b, c, and d have been defined in Eq. (4.49). 
A numerical plot of the eigenvalue ~1 for the solutions qoo, qo~, qoc, 

and qo~ obtained in the previous section shows that this eigenvalue is 
always negative. We have confirmed this for several values of p. 

Thus, the Hessian cannot be positive definite or positive semidefinite 
and the free energy becomes unstable. There are no stable nondiagonal 
solutions when p > 2. 

4.3. S u m m a r y  

The free energy per spin for the n = 3 model was derived in Eq. (4.33) 
in the thermodynamic limit N ~ oo by the method of steepest descent from 
Eq. (2.6). It will only hold for stable solutions of the order parameter equa- 
tions. As for the n = 2 model, if we find more than one stable solution at 
a certain temperature T, the solution which yields the lowest free energy 
(4.33) will constitute the true equilibrium configuration. 

For  all p we found that between the temperatures Tel and Ts, 
corresponding to AJs = { l O / [ 3 p ( p - 1 ) ] }  I/2, both the high-temperature 
solution Q=diag(1 ,  1, 1) and the "antisymmetric" diagonal solution 
Q = Pr'diag(/~lo, #1o, 3 - 2 # 1 o ) - P  are stable. A numerical comparison of 
the free energy (4.33) for these two solutions for various p shows that in all 
cases we find exactly one AJ c with AJc~ < AJc < A J,. For A J <  AJ~, i.e., for 
T >  To, the high-temperature free energy remains the lower free energy, 
whereas for A J >  AJ~, i.e., for T <  Tc, the "antisymmetric" free energy has 
a lower value. 

We further find that the singular T = 0  solutions from Eq. (4.31) all 
yield a higher free energy (4.33) than the T--+ 0 limit of the "antisymmetric" 
configuration 

p r .  diag(#la, #1o, 3 - 2/.tlo ) - P = p r .  diag(0, 0, 3)- P 
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Combined with the results from the previous sections, this then allows 
us to describe the various cases for the n = 3 model as follows. 

4.3.1. Case  p = 2 .  The model can be described by one order 
parameter #1, and we have one phase transition at AJc ~ 1.23037. There is 
no simple analytic expression for AJc. 

For zlJ>AJ~, i.e., T <  To, the order parameter #i is the solution 
0<#1  <0.75 of Eq. (4.26). For AJ<zJJ~, i.e., T >  To, #1 is identically 
equal to 1. 

The order parameter matrix Q is given by Q = O r . d i a g ( # l , # 1 ,  
3 - 2 # 1 ) .  O with O an arbitrary orthonormal matrix. The free energy per 
spin is given in general by Eq. (4.33), or in particular by the zeroth-order 
term of Eq. (4.40). 

Thus, for T > T c  we have the high-temperature solution Q =  
diag(1, 1, 1). 

At T =  Tc we have a phase transition. It is a first-order phase tran- 
sition since -Oa/~T has a discontinuity at T =  T~. Furthermore, the spin 
configuration (q~) has a jump discontinuity at To. This is in contrast to 
the n = 2 model, where the spin configuration is continuous at T c. 

For T <  To, we obtain a degenerate low-temperature continuum of 
states Q = O r .  diag(#1o, #1,, 3 -  2#~).  O. The degeneracy results from the 
invariance of the annealed partition function (2.3) under orthonormal 
transformations (three-dimensional rotations) of the spin vectors S~ when 
p = 2 .  

4.3.2. Case  p > 2 .  The models can be described by one order 
parameter #1, and we have one phase transition at AJ c. There is no 
simple analytic expression for AJ c. However, we know that AJc< 
{ lO/[ 3p(p - 1)] }1/2. 

For AJ>AJc ,  i.e., T <  To, the order parameter #1 is the solution 
0 < # i o <  1 - A  (for some A) of Eq. (4.26). For AJ<AJc ,  i.e., T >  T~, #1 is 
identically equal to 1. 

The order parameter matrix is given by Q = P r . d i a g ( # l , # l ,  
3 - 2 # 1 ) - P ,  where P represents an arbitrary permutation of the diagonal 
elements of diag(-.- ). The free energy per spin is given by Eq. (4.33). 

Thus, as for p = 2 ,  we have the high-temperature solution Q =  
diag(1, 1, 1) when T >  To. 

At T =  T~ we have a phase transition. As for p = 2, it is a first-order 
phase transition with the spin configuration (q~,) displaying a jump 
discontinuity at T c. This is in contrast to the n = 2 model, where the spin 
configuration is continuous at Tc for p = 3 and p = 4. 

For T < T~, we obtain the diagonal solution Q = 
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Pr .d iag(pla ,  #ao, 3 - 2 P l o ) . P  with two identical diagonal elements. The 
symmetry in the vector components S] ,  S~, and S~ in the annealed parti- 
tion function (2.3) is responsible for the permutation degeneracy. 

Since AJc<{lO/[3p(p-1)]} 1/2, we find AJc~O, i.e., T,-- ,oo as 
p -~ oo. From Eq. (4.26) we further see that for finite AJ and p ~ oo the 
only possible configurations are Q = p r .  diag(0, 0, 3)-P.  This is also what 
we expect physically as the ordering element of interactions becomes 
dominant when p --, oo. 

5. M O D E L  FOR G E N E R A L  n 

In the previous two sections we found that for the n = 2 and n = 3 
model only diagonal solutions Q of the order parameter equations 
(2.23)-(2.25) constitute stable solutions when p > 2. We found further that 
we have only one phase transition. Finally, the low-temperature solution Q 
has the same number of distinct eigenvalues and respective eigenvalue 
degeneracy at T = 0  and at finite temperatures. It seems physically 
reasonable to expect these general features from the corresponding models 
for arbitrary n as well. 

With the above four assumptions, we can then derive explicit forms of 
the order parameter equations (2.23)-(2.25) for general n. 

5.1. The  H i g h - T e m p e r a t u r e  Solut ion  

From our normalization condition for n-vectors and Eq. (2.5) we have 

~ q~=n (5.1) 
y--1  

and 

q~ >/0 (5.2) 

If we look for a solution Q of the order parameter equations (2.23)-(2.25) 
which has only one distinct eigenvalue, then the order parameter equation 
(2.24) already requires that 

Q=I (5.3) 

By using the formula (A9) from Appendix A, it is easy to see that the order 
parameter equations (2.23) will be satisfied in this case as well. 

Thus, Q = I represents a legitimate solution of Eqs. (2.23)-(2.25). For  
p > 2, we can identify it as the high-temperature solution by the fact that 
the order parameter equations (2.23) yield #1 . . . . .  #n = 1 as T ~  oo and 
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by our initial assumption that all stable solutions Q must be diagonal when 
p > 2. For p = 2, we have shown at the end of Section 2 that it suffices to 
find diagonal solutions Qd. The most general solution Q is then obtained 
from Eq. (2.28). Since, as for p > 2 ,  the order parameter equations (2.23) 
yield #1 . . . . .  #~=1 as T~oe,  Q = I  must also represent the high- 
temperature solution for p = 2. 

The free energy per spin in this case is obtained from Eqs. (2.7), (2.8), 
and (2.12) as 

) kT-N--,~ -N  ln(ZN) 

---- - - G *  

(P-1)(AJ) 2 exp IP(~J)2 SrQ(p- 1)S] 4 ~ Iq~]P- ln f  =./~ 
~,p IlSII 

dS 

n ( A j ) 2  In 2rc"/2n(n ~)/2 
4 F(n/2) (5.4) 

where we have used Eq. (B5) in the evaluation of the integral in the last 
step. 

5.2. The Low-Temperature Solution 

Because of Eqs. (5.1) and (5.2), the expression Z~= 1 q~P~ will assume its 
maximum value if one q~ equals n and all other q~7 equal 0. From Eq. (2.4) 
for the annealed partition function we see that at T =  0, i.e., as zlJ-, o% the 
system will be in the ground state determined by the maximum value of 
Z~,~ = 1 q~.  Since we have assumed that Q is diagonal when p > 2 and since 
we showed at the end of Section 2 that it suffices to find a diagonal solu- 
tion Q~ for p = 2, ~n~,~ = 1 q~P will then assume its maximum value for 

Q, = diag(0,..., 0, n) at T = 0  (5.5) 

The most general matrix Q is obtained by permuting the diagonal elements 
of the standard form Qs when p > 2  and by an arbitrary orthonormal 
similarity transformation when p = 2; see Eq. (2.28). 

Because we have further assumed that the number of distinct eigen- 
values and their degeneracy is conserved at finite temperatures, we thus 
have the result that at low temperatures the order parameter matrix Q has 
two distinct eigenvalues, one with degeneracy n -  1 and one nondegenerate. 

822/68/5-6-19 
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This means that the most general low-temperature order parameter matrix 
Q must be of the form 

Q = P r . d i a g [ # l  ..... /21, n - ( n - 1 ) # 1 ] - P ,  p > 2  
(5.6) 

Q = O r . d i a g [ I q  ..... 1 2 1 , n - ( n - 1 ) 1 2 1 ] . O ,  p = 2  

where the similarity transformation with P represents an arbitrary per- 
mutation of the diagonal elements of diag[-...  ] and where O is an 
arbitrary orthonormal matrix. 

Since we require two distinct eigenvalues, this equation tells us that 
/~1 # 1. Therefore, we can satisfy the order parameter equation (2.24) by 
choosing 

ao----//1 - - a l#  p-1 (5.7) 

n(1 -- /q)  
al --= In -- (n -- 1)#1] p-I  -- kt p-1 (5.8) 

The integrals in the order parameter equations (2.23), on the other 
hand, can be evaluated by using the formula (A9) from Appendix A. With 
2~=ktl p-1 having (n-1) - fo ld  degeneracy and 2 r = [ n - ( n - 1 ) l A ]  p i 
being nondegenerate, we find 

and 

M[ �89 n/2 + 1, z] 
(5.9) # 1 -  M[�89 n/2, z] 

M[ 3, n/2 + 1, z] 
(5.1o) n -  ( n -  1 ) # l -  

Here, we have used the identity 

M[�89 n/2, z] 

M[a, b, z] = eZM[b - a, b, - z ]  (5.11) 

from ref. 9, Eq. (13.1.27), in Eq. (5.10), and we have defined the quantity 

np(~J) 2 
z -  ~ { [ n -  (n - 1 ) ~ 1 1  p - 1  --#t p 1} (5.12) 

Equations (5.9) and (5.10) are not independent. By using the identity 

( l + a - b )  M [ a , b , z ] - a M [ a + l , b , z ] =  - ( b - 1 ) M [ a , b - l , z ]  (5.13) 

from ref. 9, Eq. (13.4.3), we find 

( n -  1)"/~1 + I n -  (n - 1)ktl] = n  (5.14) 

as expected from our normalization condition for n-vectors. 
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Thus, Eq. (5.9) is the only order parameter equation which has to be 
solved in order to find the low-temperature solution (5.6) for the general n 
model. This can easily be done numerically. 

The free energy per spin for the low-temperature solution is obtained 
from Eqs. (2.7), (2.8), and (2.12) as 

a >) k--~=lim - ln (ZN 

(p - 1 ) ( ~ J ) 2  

4 

(p - 1)(~J)2 

4 

= , , s ]  
m, fl 

{ ( n -  1 ) # f +  I n - ( n -  1)#,]  p} 

dS 

2~n/2n ("-1) /2  n p ( A J )  2 [~  n ] 
--ln r(n/2) ~ u f - ' - l n M  ,~,z (5.15) 

where z has been defined in Eq. (5.12) and where we have used Eq. (B5) 
in the evaluation of the integral in the last step. 

In order to prove the stationarity of the free energies (5.4) and (5.15) 
with respect to fluctuations of the order parameters q ~  about their 
respective equilibrium configurations, one would have to follow the same 
procedure as for the n = 2 and n = 3 models. The phase transition points 
A J  C are determined by equating the two free energies (5.4) and (5.15). 

A P P E N D I X  A 

In this Appendix we evaluate the following two types of integrals: 

g("fn)=2-~m'3~ ,oo exp[2n] h 2 2~ 6/2 (AI) 
-- ~ = I  4 

- - i oo  y = l  

(A2) 

for the special cases n = 2 and n = 3. 

Case  n = 2. From the integral representation of the gamma function 

f o  e- ; ,~e~Xx~ - 1 d x  = F(z ) ( ,~  - a )  - ~  (A3) 



962 Taucher and Frankel 

and the convolution theorem for Laplace transforms we get 

fo ;o e ~x dx e.~X- O(x _ t ) ~ -  1 eb,t~2- ~ dt 

= F(Zl) F(z2)(2 -- a) -~ (2 -- b) ,2 (A4) 

Using an integral representation of Kummer's confluent hypergeometric 
function [see e.g., ref. 9, Eq. (13.2.1)] 

F(fl) f~ eZ't ~ l (1-t)B ~- '  dt (A5) 
M(a, fl, z) = F(fl - c~) F(~) 

one can easily show that 

fo'e a~x - ' ) ( x -  t) ~1 1 eb,t~2 1 dt 

= e'XB(vx, Zz)X~+~2-1M(z2, rl +z2, ( b - a ) x )  (A6) 

Here, B(Zl, z2) is the beta function defined as 

r(~l) r(~) 
B('c~, z2) - (A7) 

F(zl + z2) 

and Kummer's function is defined as 

Z 0~(O~q- 1) Z 2 
M(c~, ~, z ) -  1 + ~ ~.T + f l - ~  1)2! + "'" (a8) 

By inserting Eq. (A6) into Eq. (A4) and using Laplace's inversion formula, 
we finally find 

1 
f,i + ' ~ ( 2 - a )  ~l().-b) ~:2 e;~X d2 

2~zi i~ 

e a X x ~ l  q- T 2 - -  1 

--  M( ' r2 ,  "[1 "~- 752,  (b - a)x)  (A9) 
F(T1 + "r2) 

Applying this formula to Eq. (A1) when n = 2  then gives 

-- 1 ~ + ~  ( 2 p( 4 J )-1/2 ( g ( x f 2 ) = ~ /  -e~ exp[22] ) 2  4 

= exp [2 P(~J)2 )o~J M (~, 1, 2P(~J)2 (22- 2~) ) 

= exp [P(~J)2 (21 -F 22)] 1o (P(~J)2 (J~2 - )~1 ) ) (A10) 



Annealed n-Vector p-Spin Model 963 

where in the last step we have used the identity 

M(�89 1, 2z) = eZlo(z) (All)  

[see, e.g., ref. 10, Eq. (7.11.2.10)] and where we have denoted modified 
Bessel functions of order n by In. 

Applying formula (A9) to Eq. (A2), on the other hand, gives 

fl(x/~)=_~ifc_i exp[22] 2 4j ~ 3/2 p(zlj)2 --1/2 

= 2 exp [2P(~J)2 211 M (~, 2, 2 P(~J)2 (22-  21, ) 

= 2 exp [P(~J)2 (2, + 22)1[Io (P(~J)2 (22 - 21) ) 

where in the last step we have used the identity 

M(�89 2, 2z)= eZ[Io(z)- Ii(z)] (113) 

(see, e.g., ref. 10, Eq. (7.11.2.12)]. 
In the same fashion one finds 

J~2(x/-2) = 2 exp [P(~J)2 (21 + 22)][Io (P(~J)2 (22 - 21) ) 

Case n=3. From Eqs. (A9) and (111) we find the Laplace inver- 
sion formula 

~ i  3c_ioo exp[2x] 4 

=expI~(2~+2,)x]Io(~(2~-27)x  ) (A15) 

From ref. 11, Eq. (2.3.5), we further have 

I f c+i~176 (2 P(AJ)22~)-k ~/2d2 2~i c - ~  exp[2x] 4 

x//-~ (2k)! exp 2~x x ~ 1/2 (A16) 
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By using the convolution theorem for Laplace transforms, we can combine 
Eqs. (A15) and (A16) to get 

f~(,,fS)=2~ i c-,~ exp[323 4 

- ~ exp 2~(3 - v) (3 - ~)1/2 

x exp [P(~J)2 (2p + 2,)r]  Io (P(~J)2 v) dr 

1 

= 6c~ fo exp[ -a~u](1 - u) 1/2 Io(b~u) du 

d2 

(A17) 

where we have made the substitution v = 3u in the last step and where we 
have defined the quantities 

3p(AJ) 2 
a~-  = ~ ( 2 2 ~ - 2 e -  2~) (A18) 

3p(AJ) 2 
b~ - ~ (2~ - 2~) (A19) 

c _(3)l/2expI3P(4J)2)~a] (A20) 

~(v/3) is evaluated by following the same procedure as for f~(x/3). We find 

g ( x f 3 ) - ~ /  c-i~ exp[32] 4 

x(2 P(AJ)24 2p) - ' /2 (  2 P(AJ)2 2')41/2 

1 

= c, fo exp[ - a , u ] ( 1  - u) -I/2 Io(b~u ) du 

d2 

(A21) 

where a,, b~, and c, have been defined in Eqs. (A18)-(A20). We note that 
the last integral in Eq. (A21) is only apparently dependent on c~. 
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In the case that two of the eigenvalues 21, 22, and 23 are equal, the 
integrals in Eqs. (A17) and (A21) can be evaluated even further. 

Let us assume that 2~ = 2~ r 2~. By using Eq. (A9) and the definition 
of f~, we then find 

f ~ ( x f 3 ) - ~  i exp[32] 2 P(AJ)22~ 2 p( d2 
. io~ 4 

4 1 5 3p(AJ) 2 = c~M[~,~, -~ (27-2~) ] 

= c ~ ! I ~ ( ~ ) l / 2 e r f i , x / - z , - e Z ]  (A22) 

where erfi(z) denotes the error function of an imaginary argument 

erfi(z)=--~f~exp[fl]dt (A23) 

and where we have defined the quantity 

3p(AJ) 2 
z = ~ (2~ - 2~) (A24) 

In the last step of Eq. (A22) we have used the identity 

[see, e.g., ref. 10, Eq. (7.11.2.13)]. 
In the same fashion we evaluate f7 and ~, 

L ( ~ )  -=2~ri c too exp[32] 4 4 

4 3 5 3p(AJ) z (27--2~)] 
= c MI , 2, 

6 I 1/~\1/2 n 
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I f  'l+i~ exp[32] (Z P(Aj)2 
g(xf3) -= 2rci c-ioo 4 

where z 
identities 

1 3 3p(zlJ) 2 1 =2c M 

= c~ (~)1/2 erfi(,,f~) 

has been defined in Eq. (A24) 

Taucher and Frankel 

--2~x) 1( I~ P(AJ)24 )~)-1/2 d2 

(A27) 

and where we have used the 

5 z] 3 1 / ~ \ 1 / 2  7 
M [ ~ , ~ ,  J =~zzleZ--~lz) erfi(,~/-z)J 

from ref. 10, Eqs. (7.11.2.29) and (7.11.2.11). 

(A28) 

(A29) 

A P P E N D I X  B 

In this Appendix we evaluate the following three types of integrals: 

g(,~/-n)~fllSll=~/ explP(A~)~SrQ(P-1)S]dS (B1) 

f~#(N/n)=~fl[Sll=.f S~S#explP(A~}2STQ(p-1)SIdS (82, 

hct~76(~v/-~)~-Ii,s,l=xa~aJ3s'a6exp[P(~}2sTa(P 1)Sl dS (B3,  

for the diagonal order parameter matrix 

Q(p 1) ~___ diag(21 ..... 22, )~2,---, 22) (B4) 
k n--k 

Case  1 : 
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By Laplace-inverting Eq. (2.21) and using the formula (A9) derived in 
Appendix A, we find 

- k n  1 g(, , /~) = x .  M n 5 ' ~' z (Bs) 

where we have defined the quantities 

2gn/2n(n 1)/2 ( 4 J ) 2 ~ 1 )  
X=- F(n/2) exp np( (B6) 

and 

Case  2: 

np(3a) 2 
z - - -  (22-2,)  (B7) 

4 

f~(x/-s l)Sl dS 

By Laplace-inverting Eq. (2.20) and using the formula (A9), we get 

( [-n-k n 7 
l, 

f~(xfs  1 n 1 z], (BS) 
[ - +  ,5+, 

where ~$~n denotes the Kronecker 6-symbol and where X and z have been 
defined in Eqs. (B6) and (B7). 

Case 3: 

P( A J)2 ~ T . . . .  

As before, in order to avoid the ~ constraint in the above integra- 
tion, we form the Laplace transform 

~ ;  exp[ -2x ]  h~n,6(x~s dx 
2,/; 

f ;  2r2 = e h~a(r) dr 

: f ~  S=SnSrS'~expI- ~, (2 P(Aj)2 ) ] -oo ~=1 4 2r (S*)2 dSl"'dS" 
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( 3gn/2 (). P(4J)221)-(k/2+21(2 

e = f l = y = 6 ,  e~<k 

3rc"/2 (2 P(4J )2 jq ) -M2(2  
T 

c ~ = f l = y = 6 ,  ~ > k  

Taucher and Frankel 

P(AJ)2 )~2) - (" - k)/2 
4 

p (A j )2  "~--((n--k)/2 + 2) 

4 Z2) 

( I )--(n k)/2 ~n/4 p(Aj)2 21 ) -- (k/2 + 2) p(flj)2 22 
~ -  2 4 2 4 

a = / 3 r  c~, y ~<k 

re,~4 p(dj)2 \ -(k/2 + 1) p(Aj)2 22 
- ~  2 4 21 2 4 ' 

c~ = fl C y =- 6, e ~ < k < 7  

--~- 2 4 4 ' 

~ = f l r  CqT>k 

,0, otherwise 

(B9) 

The conditions in Eq. (B9) are hereby understood as modulo permutations 
of ~, fl, y, and 6. By Laplace-inverting Eq. (B9) and using the formula (A9), 
we get 

nX 
h~a(x/-n) - n + 2 

[ ] 3M n - k  n 
2 ' 2  + 2 ' z  ' c~=fl=?~=6, ~ < k  

3M + 2 , ~ + 2 ,  z , ~ = f l = 7 = 6 ,  ~ > k  

] , ~ t -2 ,  z , c~=fl:/=7=3, c q T ~ k  

(BIO) 

M + , ~ + 2 ,  z , c~= /~ r  c ~ < k < y  

M + 2 , ~ + 2 ,  z , c ~ = f l C y = 3  , c~,y>k 

.0, otherwise 
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where X and z have been defined in Eqs. (B6) and (B7), respectively. The 
conditions in Eq. (B10) are again understood as modulo permutations of 
~, fl, 7, and 6. 

A P P E N D I X  C 

In this Appendix we evaluate the following three types of integrals: 

g(~)=-fHSll=x/ e x p I ~ S T Q ( P  1)S]dS (C1) 

S ~ S ~ e x p [ ~ S T Q  {p 1)S] dS (C2) 

S~Sf lSTSaexp[~SrQ(P-~)S]dS  (C3) 

for the special symmetric order parameter matrix Q 

qa ~ = fl q~/~ -= (C4) 
qo ~ f l  

Case  1 : 

g(x/-n)-fllsll=,/ exp[p(A~)~STQ'P-1)S]dS 

In order to avoid the x/-s constraint in the above integration, we can 
form the Laplace transform 

f: expl--2x] g(x~) 

fo = exp[ - 2 r  2 ] g(r) dr 

=f: exp[--2sTs-~-~STQ(p-1)S]dS 
= exp [ - S r A S ]  dS (C5) 

- - o o  

where we have defined the matrix A as 

2 P(AJ)2 P 1 
4 qa , ~=fl (c6) A =- P(AJ) 2 p- 1 

4 qo , ~#fl  
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A 
roots of 1, coi (i = 1 ..... n), 

p(AJ) 2 
t 

is a cyclic matrix. Thus, its eigenvalues v~ are determined by the nth 

n- 1 p(Aj)2 1 

4 q~-l_ Z ---f-- q~o- ~ 
k=l 

{)~2 P(AJ)2 
------~--(qp 1--qoP-l), o i e l  

= p(Aa)2 (C7) 
----4---(qp-l+(n-1)qeo-~), e ) i = l  

Since A is symmetric, we can find an orthonormal 
diagonalizes A. Using the definitions 

v 1 =_,~ P (A J)2 4 [q~- l+(n-1)qP~ 

v 2 =_ ~ P (A J)2 
4 (q~-'-qP~ 

matrix 0 which 

(C8) 

we can demand 

D = OrAO = diag(vl, V2,.-., V2) (C9) 

The orthonormal matrix O---(%~) must then have the form 

O~1 ~ F/ i /2  

%~=0,  f l > ~ +  1, 

0~= - ( n - f l + l ) l / 2 ( n - - f l + 2 )  -1/2, f l = ~ + l ,  

% ~ = ( n _ f l + l ) - l / 2 ( n _ f l + 2 )  1/2,  f l < a +  1, 

By using the orthonormal coordinate transformation 

g - o r s  

f l > l  

3>1 

3>1 

(c10) 

(cll) 

we can now evaluate Eq. (C5), 

y •  e x p [ - S r A S ]  dS 

__i -oo B=2 

= rd'/2v I a/2vf ( '-  1)/2 (c12) 
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Laplace inversion of Eq. (C5) and application of the formula (A9) derived 
in Appendix A to Eq. (C12) finally yields 

) ,2, z (C13) 

where we have defined the quantities 

2gn/2n (n-1)/2 {rtP(4J)2 } 
Y -  V(n/2) exp [ q P - l + ( n - 1 ) q P  ' ]  (C14) 

and 

n2p(dJ) 2 
z -  ~ q p - 1  (C15) 

Case 2: 

P ( A J )  2 ~ r . . . .  1 ,~7  
dS 

We evaluate f~B(x/n) for the symmetric matrix given by Eq. (C4) and 
proceed analogously to the derivation of g(x/-s 

The ,,/-s constraint can be avoided by first taking the Laplace 
transform 

I ~176 [exp( -2x)? f~/~('/-~) dx C oO 

[ e x p ( -  2r2) ] f ~ ( r )  dr 
Jo =J0 

= S~S ~ exp[ -STAS] dS (C16) 
- - o o  

where A is given by Eq. (C6). 
The matrix A is then diagonalized by means of the orthonormat 

coordinate transformation (C11). 
For e =/3 we get 

f 
o o  

m o o  

(Sg) 2 exp[-STAS] dS 

= f  o:,~S '~ exp [ -g rDg]  dg 
- - o o  1 
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2 */3 2 ..  = o~r ) e x p  - Y l ( S l )  2 -  Y2(afl) 2 dS 1. dS" 
-oo/3=1 ~=2 

T('n/2 2 7~n/2 =021T.r 1)/2+ ~ Oo:/3Tyll/2y2(n+1)/2 
/3=2 

~n/2 
= 2n [y13/2y2(n--1)/2 + (n - 1 )yll/2y2 (n+ 1)/2] (C17) 

where we have used Eq. (C10) in the last step. 
For a r  we get 

f-~oo S~S/J exp[-SrAS] dS 

=foo ~ O~xyO/3y(~?)2exp[_yl(~l)2_ ~y2(~fl)2]d~l...d~n 
oo ~=1 /3=2 

~n/2 ~n/2 
= 0~,10/31 ~ -  v13/2v~ (" 1)/2 + ~ 0~,70/3~ ---2-v~l/2vf(,,+ ll/2 

7=2 

T(n/2 
= 2n [y13/2y2(n l)/2--yll/2v2(n+l)/2] (C18) 

f~/3(x/-n) can now be determined by Laplace-inverting Eq. (C16) and 
applying the formula (A9) derived in Appendix A to Eqs. (C17) and (C18). 
We obtain 

f n 1 n n 1 n 
Y '2 '2 

, 2 + l , z  + ( n - 1 ) M  , 2 + l , z  , ~=fl 

(C19) 

where the quantities Y and z have been defined in Eqs. (C14) and (C15), 
respectively. 

Case 3: 

Again, we evaluate h~ara(x/-n) for the symmetric matrix given by 
Eq. (C4) and proceed analogously to the derivation of g(x/%). 

The x//-n constraint is circumvented by first taking the Laplace 
transform 
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h~a(,~f~) o o  

dX= Jo [-exp(-2r2)] h~,a(r) dr f0 [exp(-2x)]  2 , ~  

= S~S~S~S ~ exp[ - S r A S ]  dS (C20) 
- - o o  

where A is given by Eq. (C6). 
Let Pp~ be the n x n permutation matrix which swaps the pth and rth 

components of S, 

Pp~ 

is '  

\s" ;"/ 
(C21 

We can easily show that because of the special symmetry of the matrix A 
[-see Eq. (C6)] we have 

T Po~APp~ = A for all p, ~ (C22) 

Thus, we can find coordinate transformations 

g =-- P,,~I . . . . .  P p 4 z 4 .  S (C23) 

which permute the components of S in such a way that the last integral in 
Eq. (C20) reduces to one of the following five canonical forms: 

f ~ S~S~S~S ~ e x p [ - S r A S ]  dS 

f ~  ~l~S2g3~4exp[-gTAg]dg, ~r162 
o o  

f ~  (S1)2 g2S3 exp[--grA g] dg, c ~ = f l ~ y r  

S = (~)2  (~2)2 e x p [ _ g r A g  ] d~, ~ = f l e ~  =~ (C24) 

f ~  (~ l )3~2exp[ -grAg]dg ,  ~ = f l = 7 r  

f ~  (S1)4exp[--grAg]dS,  7 = f l = T = 6  
- - o o  

Here we have used Eq. (C23) and the fact that det(Po; ) = 1. 
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Using the orthonormal coordinate transformation 

= O r~ (C25) 

we can now evaluate Eq. (C24). 
For e r 1 6 2  we get 

f o, S ~ S ~ S ~ S  ~ exp[ -STAS]  dS 
--00 

= f - 2  818283~'4 e x p [ - S r A S ]  dS 

/c t( ) =f ~ ~ Z ~ ~ ~ ~ Z ~ ~ 
--oo ~ = 1  / \ f l = l  7 1 / \ 6 = 1  

/ 3 = 2  

= O lcr O2~. O3~ 0 4 c ~ ( 8 ~ )  4 

+ Y~ (01~02~03~04~ + 01~03~02~04~ + 01~04~0~03~)(S~) ~ (s~)~] 

x e x p [ - V l ( S 1 )  2 -  ~ v2(S~)21dg 
B = 2  

= ~ ~ (~q~)4 (n - 1)n ~ (~2)4__n ( ~ ) 2  ( ~ ) 2  

+(~_1~(~q~)~(~3)~ exp -~1(~1) ~- ~ v~(~q~) ~ a~ 
B = 2  

T~n/2 
=4n  2 (3v~-5/Zv2 (" l)/2--6V13/2v2(n+t)/2-l- 3Vll/21~2 (n+3)/2) (C26) 

where we have used the explicit form of the matrix O from Eq. (C10) and 
the symmetry of the integral in the second last step. 

In a similar fashion one evaluates the remaining four cases of 
Eq. (C24). We find 
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f ~o S~SeSrS a -STAS] dS exp[ 
-oo 

7r, n/2 
~n 2 ( 3V ? 5/2V f ( n -  1)/2 q_ (n - 6 )V13/2V 2 (n + 1)/2 

--(n--3)Vll/zv2 ('+3)/2) 0~=fl~7~,5 

~n/2 
(3v75/2v2(,- 1)/2 + 2(n - 3)v(3/2v2 ~"+ 1)/2 

+ (n 2 - 2n + 3)v 1/2,,-(,+ 3)/2, 1 "2 ! ~ = f l  r  

T(n/2 
~ n  2 (3V15/21~2 (n--1)/2 _jr_ 3(n - 2)v13/2v2 (n+ 1)/2 

- 3 ( n - 1 ) V l l / 2 v 2  (n+3)/2) o ~ = f l = 7 # 6  

~n/2 
(3VlS/2V2(n-1)/2 q_ 6(n - 1)v13/2v2 (n+ 1)/2 

+ 3(n - -1 )2v11 /2v2  (n+3)/2) O ~ = f l = ~ = ~  

(C27) 

Now h=~a(x/n) can be determined by Laplace-inverting Eq. (C20) and 
applying the formula (A9) derived in Appendix A to Eqs. (C26) and (C27). 
We obtain 

Y 
h~era(x/-n) - n(n + 2)" 

"HI3, - 6 ,  3, z], 

H[3, n--6, - - ( n -  3), z], 

H[-3, 2(n - 3), n 2 --2n + 3, z], 

HI3, 3 (n-2) ,  - 3 ( n -  1), z], 

,HI-3, 6(n - 1), 3(n -- 1) 2, z], ~=/~=y=a 
(C28) 

where the quantities Y and z have been defined in Eqs. (C14) and (C15) 
and where we have introduced the function 

) , 2 + 2 ,  z +bM 2 , ~ + 2 ,  z 

+ c M (  n+ 3 n ) 2 , ~ - 2 ,  z (C29) 
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